Intensivmedizin up2date 2015; 11(03): 197-212
DOI: 10.1055/s-0034-1392645
Allgemeine Prinzipien der Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Under pressure – Der Stellenwert des zentralen Venendrucks in der modernen Intensivmedizin

Michael Heßler
,
Philip-Helge Arnemann
,
Christian Ertmer
Further Information

Publication History

Publication Date:
11 August 2015 (online)

Kernaussagen
  • Um aus dem ZVD therapeutische Schlüsse ziehen zu können, sind einige Dinge zu beachten: (1) technisch korrekte Messung, (2) Berücksichtigung intrathorakaler Druckverhältnisse und (3) Berücksichtigung dynamischer Faktoren (u. a. Venentonus). Die Bewertung des ZVD, v. a. bei plötzlichen Änderungen, muss zwingend unter Kenntnis möglicher Fehlerquellen und im klinischen Kontext des Patienten erfolgen.

  • Die zentrale Venenpulskurve weist einen typischen Verlauf, gekennzeichnet durch Wellen und Senken, auf. Pathologien können sich in charakteristischen Veränderungen des Kurvenverlaufs zeigen. Daher können aus der Analyse der zentralen Venenpulskurve wertvolle Informationen über den Patienten gewonnen werden.

  • Als alleiniger Parameter ist der zentrale Venendruck nicht geeignet, Aussagen über den Volumenstatus und die Volumenreagibilität zu treffen. Des Weiteren ist die Steuerung einer Volumentherapie einzig am ZVD obsolet und wahrscheinlich schädlich, da eine mögliche venöse Kongestion zu Organfunktionsstörungen beitragen kann.

  • In bestimmten Patientenkollektiven (u. a. Sepsis und Herzinsuffizienz) ist der zentrale Venendruck ein relevanter Indikator für die Entwicklung von Komplikationen und ein Prädiktor des Outcomes.

  • Die aktive Senkung des ZVD zur Vermeidung der mit venöser Kongestion assoziierten Komplikationen ist Gegenstand aktueller Forschung.

  • Da der ZVD beim intensivmedizinischen Patienten insgesamt v. a. ein prognostischer Marker ist und bisher keine ausreichende Evidenz zur Therapiesteuerung anhand des ZVD vorliegt, sollte auf die Anlage eines ZVK zur alleinigen Messung des ZVD verzichtet werden.

 
  • Literatur

  • 1 Muralidhar K. Central venous pressure and pulmonary capillary wedge pressure monitoring. Indian J Anaesth 2002; 46: 298-303
  • 2 Ytrebø LM. Stop filling patients against central venous pressure, please!. Crit Care Med 2011; 39: 396-397
  • 3 Kumar A, Anel R, Bunnell E et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004; 32: 691-699
  • 4 Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172-178
  • 5 Hales S. Experiment 3, statistical essays: containing haemastatics. In: White PD. Heart disease. New York: Macmillan; 1974: 92
  • 6 Kalso E. A short history of central venous catheterization. Acta Anaesthesiol Scand 1985; 81: 7-10
  • 7 Bleichröder F. Intra-arterielle Therapie. Berl Klin Wochenschr 1912; 1503-1505
  • 8 English IC, Frew RM, Pigott JF et al. Percutaneous catheterisation of the internal jugular vein. Anesthesia 1969; 24: 521-531
  • 9 Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol 1953; 39: 368-376
  • 10 Schummer W, Trommer S, Kleemann F et al. Mechanical properties of Seldinger guidewires. J Vasc Access 2014; 15: 507-513
  • 11 Hind D, Calvert N, McWilliams R et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 2003; 32: 361
  • 12 Moore CL. Ultrasound first, second, and last for vascular access. J Ultrasound Med 2014; 33: 1135-1142
  • 13 B. Braun Melsungen AG. Alphacard QR – Single-use syringe for intra-atrial ECG lead with saline solution. Im Internet: http://www.bbraun.de/cps/rde/xchg/bbraun-de/hs.xsl/products.html?prid=PRID00000575 [Stand 22. 06. 2015]
  • 14 Schummer W, Schummer C, Schelenz C et al. Modified ECG-guidance for optimal central venous catheter tip positioning. A transesophageal echocardiography controlled study. Anaesthesist 2005; 54: 983-990
  • 15 Schummer W. Central venous pressure. Validity, informative value and correct measurement. Anaesthesist 2009; 58: 499-505
  • 16 Guyton AC, Greganti FP. A physiologic reference point for measuring circulatory pressures in the dog; particularly venous pressure. Am J Physiol 1956; 185: 137-141
  • 17 Seo JH, Jung CW, Bahk JH. Uppermost blood levels of the right and left atria in the supine position: implication for measuring central venous pressure and pulmonary artery wedge pressure. Anesthesiology 2007; 107: 260-263
  • 18 Sondergaard S, Parkin G, Aneman A. Central venous pressure: we need to bring clinical use into physiological context. Acta Anaesthesiol Scand 2015; 59: 552-560
  • 19 Figg KK, Nemergut EC. Error in central venous pressure measurement. Anesth Analg 2009; 108: 1209-1211
  • 20 Klinke R, Pape HC, Silbernagl S. Physiologie. Stuttgart: Thieme; 2005: 199-200
  • 21 Magder S. Central venous pressure: A useful but not so simple measurement. Crit Care Med 2006; 34: 2224-2227
  • 22 Gershengorn HB, Garland A, Kramer A et al. Variation of arterial and central venous catheter use in United States intensive care units. Anesthesiology 2014; 120: 650-664
  • 23 Rizkallah J, Jack M, Saeed M et al. Non-invasive bedside assessment of central venous pressure: scanning into the future. PLoS ONE 2014; 9: e109215
  • 24 Uthoff H, Siegemund M, Aschwanden M et al. Prospective comparison of noninvasive, bedside ultrasound methods for assessing central venous pressure. Ultraschall Med 2012; 33: E256-262
  • 25 Sato Y, Kawataki M, Hirakawa A et al. The diameter of the inferior vena cava provides a noninvasive way of calculating central venous pressure in neonates. Acta Paediatr 2013; 102: e241-e246
  • 26 Thews G, Vaupel P. Vegetative Physiologie. Heidelberg: Springer; 2005: 184-185
  • 27 Van Aken H, Reinhart K, Welte T et al. Intensivmedizin. Stuttgart: Thieme; 2014: 186
  • 28 Trautwein O, Gauer OH, Koepchen HP. Herz und Kreislauf. Physiologie des Menschen. Band 3. München, Berlin, Wien: Urban & Fischer; 1972: 223-231
  • 29 Gauer OH, Henry JP, Sieker HO. Changes in central venous pressure after moderate hemorrhage and transfusion in man. Circ Res 1956; 4: 79-84
  • 30 Echt M, Duweling J, Gauer OH et al. Effective compliance of the total vascular bed and the intrathoracic compartment derived from changes in central venous pressure induced by volume changes in man. Circ Res 1974; 34: 61-68
  • 31 Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol (Lond.) 1914; 48: 357-379
  • 32 Guyton AC. Regulation of cardiac output. Anesthesiology 1968; 29: 314-326
  • 33 Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care 2015; 19: 55
  • 34 Magder S. Bench-to-bedside review: An approach to hemodynamic monitoring – Guyton at the bedside. Crit Care 2012; 16: 236
  • 35 Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology 2008; 108: 735-748
  • 36 Cecconi M, Aya HD, Geisen M et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med 2013; 39: 1299-1305
  • 37 Gupta K, Sondergaard S, Parkin G et al. Applying mean systemic filling pressure to assess the response to fluid boluses in cardiac post-surgical patients. Intensive Care Med 2015; 41: 265-272
  • 38 Brengelmann GL. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol 2006; 101: 1525-1526
  • 39 Jayant A. What is simple is perhaps not always the truth. Anesthesiology 2008; 109: 933-934
  • 40 Levick JR. An introduction to cardiovascular physiology. London: Arnold; 2009: 97-101 384–388
  • 41 Kim YK, Chin JH, Kang SJ et al. Association between central venous pressure and blood loss during hepatic resection in 984 living donors. Acta Anaesthesiol Scand 2009; 53: 601-606
  • 42 Dellinger RP, Levy MM, Rhodes A et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228
  • 43 Cecconi M, De Backer D, Antonelli M et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Med. Intensive Care Med 2014; 40: 1795-1815
  • 44 Sasai T, Tokioka H, Fukushima T et al. Reliability of central venous pressure to assess left ventricular preload for fluid resuscitation in patients with septic shock. J Intensive Care 2014; 2: 58
  • 45 Sakka SG, Bredle DL, Reinhart K et al. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 1999; 14: 78-83
  • 46 Osman D, Ridel C, Ray P et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007; 35: 64-68
  • 47 Michard F, Alaya S, Zarka V et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 2003; 124: 1900-1908
  • 48 Diebel L, Wilson RF, Heins J et al. End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 1994; 37: 950-955
  • 49 Lamia B, Ochagavia A, Monnet X et al. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 2007; 33: 1125-1132
  • 50 Feissel M, Michard F, Mangin I et al. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest Mar 2001; 119: 867-873
  • 51 Guerin L, Monnet X, Teboul JL. Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Pract Res Clin Anaesthesiol 2013; 27: 177-185
  • 52 Rivers E, Nguyen B, Havstad S et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368-1377
  • 53 Peake SL, Delaney A, Bailey M et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014; 371: 1496-1506
  • 54 Yealy DM, Kellum JA, Huang DT et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370: 1683-1693
  • 55 Marik PE. The demise of early goal-directed therapy for severe sepsis and septic shock. Acta Anaesthesiol Scand 2015; 59: 561-567
  • 56 Boyd JH, Forbes J, Nakada TA et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011; 39: 259-265
  • 57 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). S3-Leitlinie: Intravasale Volumentherapie beim Erwachsenen. Im Internet: http://www.awmf.org/leitlinien/detail/ll/001-020.html [Stand 28. 12. 2014]
  • 58 Stephan F, Flahault A, Dieudonne N et al. Clinical evaluation of circulating blood volume in critically ill patients – contribution of a clinical scoring system. Br J Anaesth 2001; 86: 754-762
  • 59 Chappell D, Bruegger D, Potzel J et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 2014; 18: 538
  • 60 Mclean AS, Poh G, Huang SJ. The effects of acute fluid loading on plasma B-type natriuretic peptide levels in a septic shock patient. Anaesth Intensive Care 2005; 33: 528-530
  • 61 Uthoff H, Thalhammer C, Potocki M et al. Central venous pressure at emergency room presentation predicts cardiac rehospitalization in patients with decompensated heart failure. Eur J Heart Fail 2010; 12: 469-476
  • 62 Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema?. Lancet 1988; 1: 1033-1035
  • 63 Paulus BM, Ali S, Zia AA et al. Causes and consequences of systemic venous hypertension. Am J Med Sci 2008; 336: 489-497
  • 64 Drazner MH, Rame JE, Stevenson LW et al. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med 2001; 345: 574-581
  • 65 Magder S. Central venous pressure monitoring. Curr Opin Crit Care 2006; 12: 219-227
  • 66 Maeder MT, Holst DP, Kaye DM. Tricuspid regurgitation contributes to renal dysfunction in patients with heart failure. J Card Fail 2008; 14: 824-830
  • 67 Kuvin JT, Harati NA, Pandian NG et al. Postoperative cardiac tamponade in the modern surgical era. Ann Thorac Surg 2002; 74: 1148-1153
  • 68 Pompilio G, Filippini S, Agrifoglio M et al. Determinants of pericardial drainage for cardiac tamponade following cardiac surgery. Eur J Cardiothorac Surg 2011; 39: e107-113
  • 69 Ezekowitz J, McAlister FA, Humphries KH et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J Am Coll Cardiol 2004; 44: 1587-1592
  • 70 McAlister FA, Ezekowitz J, Tonelli M et al. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation 2004; 109: 1004-1009
  • 71 Ronco C, Haapio M, House AA et al. Cardiorenal syndrome. J Am Coll Cardiol 2008; 52: 1527-1539
  • 72 Krumholz HM, Chen YT, Vaccarino V et al. Correlates and impact on outcomes of worsening renal function in patients ˃ or = 65 years of age with heart failure. Am J Cardiol 2000; 85: 1110-1113
  • 73 Forman DE, Butler J, Wang Y et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol 2004; 43: 61-67
  • 74 Ljungman S, Laragh JH, Cody JR. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs 1990; 39 : 10-21
  • 75 Mullens W, Abrahams Z, Francis GS et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009; 53: 589-596
  • 76 Iacoviello M, Puzzovivo A, Monitillo F et al. Independent role of high central venous pressure in predicting worsening of renal function in chronic heart failure outpatients. Int J Cardiol 2013; 162: 261-263
  • 77 Jessup M, Costanzo MR. The cardiorenal syndrome: do we need a change of strategy or a change of tactics?. J Am Coll Cardiol 2009; 53: 597-599
  • 78 Damman K, Navis G, Smilde TD et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 2007; 9: 872-878
  • 79 Legrand M, Dupuis C, Simon C et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 2013; 17: R278
  • 80 Williams JB, Peterson ED, Wojdyla D et al. Central venous pressure after coronary artery bypass surgery: does it predict postoperative mortality or renal failure?. J Crit Care 2014; 29: 1006-1010
  • 81 Rady MY, Ryan T, Starr NJ. Perioperative determinants of morbidity and mortality in elderly patients undergoing cardiac surgery. Crit Care Med 1998; 26: 225-235
  • 82 Pilcher DV, Scheinkestel CD, Snell GI et al. High central venous pressure is associated with prolonged mechanical ventilation and increased mortality after lung transplantation. J Thorac Cardiovasc Surg 2005; 129: 912-918
  • 83 Li Z, Sun YM, Wu FX et al. Controlled low central venous pressure reduces blood loss and transfusion requirements in hepatectomy. World J Gastroenterol 2014; 20: 303-309
  • 84 Correa-Gallego C, Berman A, Denis SC et al. Renal function after low central venous pressure-assisted liver resection: assessment of 2116 cases. HPB (Oxford) 2015; 17: 258-264
  • 85 Wang B, He HK, Cheng B et al. Effect of low central venous pressure on postoperative pulmonary complications in patients undergoing liver transplantation. Surg Today 2013; 43: 777-781
  • 86 Damman K, van Deursen VM, Navis G et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 2009; 53: 582-588