Interventionelle Radiologie Scan 2015; 03(03): 223-246
DOI: 10.1055/s-0034-1392433
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Durchführung perkutaner interstitieller Eingriffe im Abdomen und Retroperitoneum mit interventioneller Magnetresonanztomografie

Christian Wybranski
,
Frank Fischbach
Further Information

Publication History

Publication Date:
11 August 2015 (online)

Zusammenfassung

Die Sicherheit und Effektivität perkutaner interstitieller Interventionen im Abdomen und Retroperitoneum beruht auf einer leistungsstarken und qualitativ hochwertigen Bildführung. Entscheidende Vorteile der MRT sind der intrinsisch hohe Weichteilkontrast, die Möglichkeit zur Bildakquisition in beliebiger Schichtorientierung und schnelle Interventionssequenzen. Um das Potential der MRT zur Führung perkutaner interstitieller Eingriffe optimal auszunutzen, sind grundlegende Kenntnisse bezüglich Sequenztypen und deren Parametern, MR-sicherer bzw. –tauglicher Instrumente und bezüglich der Wechselwirkung zwischen dem Instrument und dessen Ausrichtung im Magnetfeld sowie dem verwendeten Sequenztyp notwendig. Hierauf liegt der Hauptfokus des Artikels. Das Indikationsspektrum der interventionellen MRT wird exemplarisch anhand verschiedener am Universitätsklinikum Magdeburg etablierter Interventionen im Abdomen und Retroperitoneum dargestellt.

 
  • Literatur

  • 1 Fischbach F, Thormann M, Seidensticker M et al. Assessment of fast dynamic imaging and the use of Gd-EOB-DTPA for MR-guided liver interventions. J Magn Reson Imaging 2011; 34: 874-879
  • 2 Ricke J, Thormann M, Ludewig M et al. MR-guided liver tumor ablation employing open high-field 1.0T MRI for image-guided brachytherapy. Eur Radiol 2010; 20: 1985-1993
  • 3 Hussain SM, Wielopolski PA, Martin DR. Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? . Top Magn Reson Imaging 2005; 16: 325-335
  • 4 Penzkofer T, Peykan N, Schmidt K et al. How MRI compatible is “MRI compatible”? A systematic comparison of artifacts caused by biopsy needles at 3.0 and 1.5 T.. Cardiovasc Intervent Radiol 2013; 36: 1646-1657
  • 5 Hayes CE, Axel L. Noise performance of surface coils for magnetic resonance imaging at 1.5 T. Med Phys 1985; 12: 604-607
  • 6 Guermazi A, Miaux Y, Zaim S et al. Metallic artefacts in MR imaging: effects of main field orientation and strength. Clin Radiol 2003; 58: 322-328
  • 7 Lewin JS, Duerk JL, Jain VR et al. Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. Am J Roentgenol 1996; 166: 1337-1345
  • 8 Liu H, Martin AJ, Truwit CL. Interventional MRI at high-field (1.5 T): needle artifacts. J Magn Reson Imaging 1998; 8: 214-219
  • 9 Wonneberger U, Schnackenburg B, Streitparth F et al. Evaluation of magnetic resonance imaging-compatible needles and interactive sequences for musculoskeletal interventions using an open high-field magnetic resonance imaging scanner. Cardiovasc Intervent Radiol 2010; 33: 346-351
  • 10 Thomas C, Wojtczyk H, Rempp H et al. Carbon fibre and nitinol needles for MRI-guided interventions: first in vitro and in vivo application. Eur J Radiol 2011; 79: 353-358
  • 11 Nitz WR, Oppelt A, Renz W et al. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 2001; 13: 105-114
  • 12 Kramer NA, Kruger S, Schmitz S et al. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Invest Radiol 2009; 44: 390-397
  • 13 Frydrychowicz A, Lubner MG, Brown JJ et al. Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging 2012; 35: 492-511
  • 14 Daanen V, Coste E, Sergent G et al. Accurate localization of needle entry point in interventional MRI. J Magn Reson Imaging 2000; 12: 645-649
  • 15 Braga L, Semelka RC. Magnetic resonance imaging features of focal liver lesions after intervention. Top Magn Reson Imaging 2005; 16: 99-106
  • 16 Rempp H, Unterberg J, Hoffmann R et al. Therapy monitoring of magnetic resonance-guided radiofrequency ablation using T1- and T2-weighted sequences at 1.5 T: reliability of estimated ablation zones. Invest Radiol 2013; 48: 429-436
  • 17 Schraml C, Schwenzer NF, Clasen S et al. Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation-initial results. J Magn Reson Imaging 2009; 29: 1308-1316
  • 18 Wybranski C, Strach K, Krenzien F et al. Percutaneous abscess drainage using near real-time MR guidance in an open 1.0-T MR scanner: proof of concept. Invest Radiol 2013; 48: 477-484
  • 19 Geoghegan JG, Scheele J. Treatment of colorectal liver metastases. Brit J Surg 1999; 86: 158-169
  • 20 Winterer JT, Kotter E, Ghanem N et al. Detection and characterization of benign focal liver lesions with multislice CT. Eur Radiol 2006; 16: 2427-2443
  • 21 Welch TJ, Sheedy 2nd PF, Johnson CD et al. CT-guided biopsy: prospective analysis of 1,000 procedures. Radiology 1989; 171: 493-496
  • 22 Yu SC, Liew CT, Lau WY et al. US-guided percutaneous biopsy of small (< or = 1 cm) hepatic lesions. Radiology 2001; 218: 195-199
  • 23 Stattaus J, Kuehl H, Ladd S et al. CT-guided biopsy of small liver lesions: visibility, artifacts, and corresponding diagnostic accuracy. Cardiovasc Intervent Radiol 2007; 30: 928-935
  • 24 Li J, Udayasankar UK, Carew J et al. CT-guided liver biopsy: correlation of procedure time and radiation dose with patient size, weight, and lesion volume and depth. Clin Imaging 2010; 34: 263-268
  • 25 Stattaus J, Maderwald S, Baba HA et al. MR-guided liver biopsy within a short, wide-bore 1.5 Tesla MR system. Eur Radiol 2008; 18: 2865-2873
  • 26 Kühn JP, Langner S, Hegenscheid K et al. Magnetic resonance-guided upper abdominal biopsies in a high-field wide-bore 3-T MRI system: feasibility, handling, and needle artefacts. Eur Radiol 2010; 20: 2414-2421
  • 27 Fischbach F, Bunke J, Thormann M et al. MR-guided freehand biopsy of liver lesions with fast continuous imaging using a 1.0-T open MRI scanner: experience in 50 patients. Cardiovasc Intervent Radiol 2011; 34: 188-192
  • 28 Hoffmann R, Thomas C, Rempp H et al. Performing MR-guided biopsies in clinical routine: factors that influence accuracy and procedure time. Eur Radiol 2012; 22: 663-671
  • 29 Gannon CJ, Curley SA. The role of focal liver ablation in the treatment of unresectable primary and secondary malignant liver tumors. Semin Radiat Oncol 2005; 15: 265-272
  • 30 Lepetit-Coiffe M, Laumonier H, Seror O et al. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up. Eur Radiol 2010; 20: 193-201
  • 31 Will K, Krug J, Jungnickel K et al. MR-compatible RF ablation system for online treatment monitoring using MR thermometry. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2010; 2010: 1601-1604
  • 32 Rempp H, Waibel L, Hoffmann R et al. MR-guided radiofrequency ablation using a wide-bore 1.5-T MR system: clinical results of 213 treated liver lesions. Eur Radiol 2012; 22: 1972-1982
  • 33 Fischbach F, Lohfink K, Gaffke G et al. Magnetic resonance-guided freehand radiofrequency ablation of malignant liver lesions: a new simplified and time-efficient approach using an interactive open magnetic resonance scan platform and hepatocyte-specific contrast agent. Invest Radiol 2013; 48: 422-428
  • 34 Mohnike K, Wieners G, Schwartz F et al. Computed tomography-guided high-dose-rate brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiat Oncol Biol Phys 2010; 78: 172-179
  • 35 Ricke J, Mohnike K, Pech M et al. Local response and impact on survival after local ablation of liver metastases from colorectal carcinoma by computed tomography-guided high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 2010; 78: 479-485
  • 36 Fischbach F, Porsch M, Krenzien F et al. MR imaging guided percutaneous nephrostomy using a 1.0 Tesla open MR scanner. Cardiovasc Intervent Radiol 2011; 34: 857-863