Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2014; 21(4): 176-182
DOI: 10.1055/s-0034-1390227
Raumfahrtmedizin
© Georg Thieme Verlag Stuttgart · New York

Auswirkung von Schwerelosigkeit auf den menschlichen Bewegungsapparat – Erfolgreiche Maßnahmen gegen Degeneration

Effects of zero gravity on motor control and the musculoskeletal systems – successful countermeasures against degeneration
Ramona Ritzmann
1   Institut für Sport und Sportwissenschaft, Albert-Ludwigs-Universität Freiburg (Institutsleiter: Prof. Dr. Albert Gollhofer)
,
Kathrin Freyler
1   Institut für Sport und Sportwissenschaft, Albert-Ludwigs-Universität Freiburg (Institutsleiter: Prof. Dr. Albert Gollhofer)
,
Anne Krause
1   Institut für Sport und Sportwissenschaft, Albert-Ludwigs-Universität Freiburg (Institutsleiter: Prof. Dr. Albert Gollhofer)
,
Albert Gollhofer
1   Institut für Sport und Sportwissenschaft, Albert-Ludwigs-Universität Freiburg (Institutsleiter: Prof. Dr. Albert Gollhofer)
› Author Affiliations
Further Information

Publication History

Publication Date:
29 August 2014 (online)

Langzeitaufenthalte in der Schwerelosigkeit haben die Degeneration des menschlichen Bewegungsapparats zur Folge. Verlust von Muskulatur und Verlust von Knochensubstanz sind neben der Beeinträchtigung der posturalen Kontrolle und Bewegungskoordination die zentralen Herausforderungen der humanwissenschaftlichen Weltraumforschung. Die Erfahrung vergangener bemannter Weltraummissionen zeigt: Langzeitaufenthalte im All sind für den Menschen ohne zielgerichtete Gegenmaßnahmen in Form von körperlichem Training nicht möglich. Trainingsinterventionen, die hohe mechanische Belastungen auf das muskulo-skelettale System übertragen und somit die strukturellen und funktionellen Komponenten unseres Bewegungsapparats optimal beanspruchen und erhalten könnten, stehen aktuell im Fokus des interdisziplinären Diskurses. Neueste Befunde aus Parabelflügen und Bettruhestudien haben gezeigt, dass sowohl unter künstlichen Schwerkraftbedingungen ausgeübtes reaktives Sprungkrafttraining als auch Ganzkörpervibrationstraining strukturellen und funktionellen Rückbildungen entgegenwirken können. Die Kombination beider Trainingsmethoden verspricht daher eine zukunftsweisende Lösung zum Erhalt des menschlichen Bewegungsapparats bei Langzeitmissionen im All zu sein.

During prolonged space flights, astronauts adapt to the zero gravity environment. As a consequence, they suffer from structural and functional changes. Beside the loss of bone and muscle mass, the decline of balance control and impairments in motor coordination in response to changes within the neuromuscular system are the space agencies' major concerns regarding manned inter-planetary space flights scheduled in the future. In order to maintain health and fitness during space missions, to preserve the capability to perform critical mission tasks and to counteract microgravity-induced impairments, astronauts have to perform physical exercise during spaceflight.

Space agencies and researchers currently make efforts to develop integrated countermeasures that provide high stimuli for muscle, bone and the sensorimotor system. For that purpose, bed-rest studies and parabolic flights are used to simulate a microgravity environment and to study the suitability of exercise regimens to counteract the degeneration caused by weightlessness. Two types of exercises are considered to sufficiently compensate for the lack of mechanical loading in microgravity: whole body vibration and reactive jumps performed under artificial gravity conditions. The combination of both training regimens is considered to have substantial potential to effectively counteract the microgravity-induced deconditioning of the human body.

 
  • Literatur

  • 1 Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 2001; 204: 3201-3208
  • 2 di Prampero PE, Narici MV. Muscles in microgravity: from fibres to human motion. J Biomech 2003; 36: 403-412
  • 3 LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 2007; 7: 33-47
  • 4 Stein TP, Gaprindashvili T. Spaceflight and protein metabolism, with special reference to humans. Am J Clin Nutr 1994; 60
  • 5 Bloomberg JJ, Mulavara AP. Changes in walking strategies after spaceflight. IEEE Eng Med Biol Mag 2003; 22: 58-62
  • 6 Loomer P. The impact of microgravity on bone metabolism in vitro and in vivo. Crit Rev Oral Biol Med 2001; 12: 252-261
  • 7 Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 2009; 44: 214-224
  • 8 Stein TP, Leskiw MJ, Schluter MD et al. Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol 1999; 276: 1014-1021
  • 9 LeBlanc A, Rowe R, Evans H et al. Muscle atrophy during long duration bed rest. Int J Sports Med 1997; 18 (Suppl. 04) 283-285
  • 10 Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol (1985) 2000; 89: 823-839
  • 11 Kramer A, Ritzmann R, Gollhofer A et al. A new sledge jump system that allows almost natural reactive jumps. J Biomech 2010; 43: 2672-2677
  • 12 Bloomberg J, Layne C, McDonald P, Peters B, Huebner W, Reschke M, Berthoz A, Glasauer S, Newman D, Jackson D. Effects of Space Flight on Locomotor Control. In: Sawin CF, Taylor GR, Smith WL, eds. Extended Duration Orbiter Medical Project – Final Report 1989–1995. Houston: NASA Johnson Space Center; 1999
  • 13 Kalb R, Solomon D. Space exploration, Mars, and the nervous system. Arch Neurol 2007; 64: 485-490
  • 14 Layne CS, Mulavara AP, McDonald PV et al. Effect of long-duration spaceflight on postural control during self-generated perturbations. J Appl Physiol 2001; 90: 997-1006
  • 15 Bloomberg JJ, Peters BT, Smith SL et al. Locomotor head-trunk coordination strategies following space flight. J Vestib Res 1997; 7: 161-177
  • 16 Paloski WH, Black FO, Reschke MF et al. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 1993; 14: 9-17
  • 17 Mulavara AP, Feiveson AH, Fiedler J et al. Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res 2010; 202: 649-659
  • 18 Lambertz D, Goubel F, Kaspranski R, Pérot C. Influence of long-term spaceflight on neuromechanical properties of muscles in humans. J Appl Physiol (1985) 2003; 94: 490-498
  • 19 Layne CS, McDonald PV, Bloomberg JJ. Neuromuscular activation patterns during treadmill walking after space flight. Exp Brain Res 1997; 113: 104-116
  • 20 Greenleaf JE, Bulbulian R, Bernauer EM et al. Exercise-training protocols for astronauts in microgravity. J Appl Physiol (1985) 1989; 67: 2191-2204
  • 21 Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 2013; 113: 2183-2192
  • 22 Belavý DL, Beller G, Armbrecht G et al. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int 2011; 22: 1581-1591
  • 23 Mulder ER, Horstman AM, Stegeman DF et al. Influence of vibration resistance training on knee extensor and plantar flexor size, strength, and contractile speed characteristics after 60 days of bed rest. J Appl Physiol (1985) 2009; 107: 1789-1798
  • 24 Wang H, Wan Y, Tam KF et al. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest. Osteoporos Int 2012; 23: 2169-2178
  • 25 Kramer A, Gollhofer A, Ritzmann R. Acute exposure to microgravity does not influence the H-reflex with or without whole body vibration and does not cause vibration-specific changes in muscular activity. J Electromyogr Kinesiol 2013; 23: 872-878
  • 26 Ebben WP, Fauth ML, Kaufmann CE, Petushek EJ. Magnitude and rate of mechanical loading of a variety of exercise modes. J Strength Cond Res 2010; 24: 213-217