RSS-Feed abonnieren
DOI: 10.1055/s-0034-1385862
Niesen als mechanische Abwehr – Numerische Simulation mit Analyse der durchströmten Nasenbereiche
Sneezing as a Mechanical Defence – A Numerical Simulation and Analysis of the Nasal FlowPublikationsverlauf
eingereicht 17. April 2014
akzeptiert 14. Juli 2014
Publikationsdatum:
04. November 2014 (online)

Zusammenfassung
Hintergrund: Die Nase übernimmt die Befeuchtung, Erwärmung und Reinigung der eingeatmeten Luft. Der Niesreflex führt bei starker Partikelbelastung durch beschleunigte Ausatmung zu einer stoßartigen Reinigung der Nase. Ziel dieser Studie war die Simulation der intranasalen Luftströmung im Rahmen des Niesens in einem realistischen Computermodell.
Material und Methoden: Aus dem CT-Datensatz eines 40-jährigen Mannes wurde ein 3-dimensionales Computer-Modell der Nasenhaupthöhle und der Siebbeinzellen erstellt. Strömungssimulationen wurden für verschiedene Einatmungs- und Ausatmungs-Geschwindigkeiten (± 2 m/s bis ± 45 m/s) durchgeführt, um den Niesvorgang zu simulieren. Ergebnisse wurden mittels Videosimulation dargestellt und analysiert.
Ergebnisse: Bei der Inspiration verläuft der Hauptatemstrom entlang der mittleren Nasenmuschel. Bei der Exspiration befindet sich die Strömung weiter kranial. Dieser Effekt wird durch die Form des Nasopharynx und die posterioren Anteile der Nasenmuscheln verursacht, die wie Schaufelräder den Luftstrom lenken. Bei sehr hohen Geschwindigkeiten (Niesen) werden auch angrenzende Siebbeinzellen und die Regio olfactoria von dem stoßartigen Atemstrom erfasst. Eine große Wirbelbildung im Nasopharynx sorgt für eine gleichförmige Verteilung auch des unteren Nasengangs.
Schlussfolgerung: Niesen ist ein Schutzreflex zur Reinigung der Nase. Die Strömung erfasst ab 10 m/s die kranialen Nasenabschnitte und angrenzende Siebbeinzellen. Im Vergleich zur Einatmung ist der Ausatemstrom nicht einfach nur umgekehrt. Kraniale Nasenbereiche, in denen während der Ruheatmung Partikel abgesetzt werden, werden erfasst.
Abstract
Introduction: The nose is responsible for humidification, heating and cleaning of the inhaled air. The sneeze reflex leads to a shock-like cleaning of the nose in strong particle exposure. The aim of this study was the simulation of intranasal air flow of sneezing in a realistic computer model.
Materials and Methods: Based on the CT scan of a 40 year old man a three-dimensional computer model of the nasal cavity and the ethmoid sinuses was created. Flow simulations were performed for different inspiratory and expiratory velocities (± 2 m/s to ± 45 m/s) in order to simulate sneezing. Results were visualized and analyzed by video simulation.
Results: During inspiration the main airflow takes place along the middle turbinate. During expiration, the flow is located more cranially. This effect is caused by the shape of the nasopharynx and the posterior portions of the nasal turbinates. During very high speeds (sneezing) also adjacent ethmoid sinuses and the olfactory region are covered by the shock-like expiratory flow. A large vortex formation in the nasopharynx is responsible for a uniform distribution of the airflow also on lower nasal areas.
Conclusion: Sneezing is a protective reflex that provides for cleaning of the nose. From a flow rate of 10 m/s, the cranial nasal areas as well as adjacent ethmoid sinuses are covered by the airflow. Compared to the inspiratory airflow the exhalation is not just vice versa. Particles that deposed in the cranial nasal areas during quiet breathing are removed.
-
Literatur
- 1 Sommer F, Kröger R, Lindemann J. Numerical simulation of humidification and heating during inspiration within an adult nose. Rhinology 2012; 50: 157-164
- 2 Hydén D, Arlinger S. On light-induced sneezing. Eye (Lond) [Internet] 2009; Nov [cited 2012 Jul 7] 23: 2112-2114 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19575036
- 3 Nonaka S, Unno T, Ohta Y, Mori S. Sneeze-evoking region within the brainstem. Brain Res [Internet] 1990; Mar 19 [cited 2013 Sep 22] 511: 265-270 Available from: http://www.ncbi.nlm.nih.gov/pubmed/2139800
- 4 Songu M, Cingi C. Sneeze reflex: facts and fiction. Ther Adv Respir Dis [Internet] 2009; June 19 [cited 2013 Aug 8] 3: 131-141 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19617285
- 5 Tang JW, Nicolle A, Pantelic J, Koh GC, Wang LDe, Amin M, Klettner CA, Cheong DK, Sekhar C, Tham KW. Airflow dynamics of coughing in healthy human volunteers by shadowgraph imaging: an aid to aerosol infection control. PLoS One [Internet] 2012; Jan [cited 2013 Aug 8] 7: e34818 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3335026&tool=pmcentrez&rendertype=abstract
- 6 Tang JW, Nicolle AD, Klettner CA, Pantelic J, Wang L, Suhaimi ABin et al. Airflow dynamics of human jets: sneezing and breathing – potential sources of infectious aerosols. PLoS One [Internet] 2013; Jan [cited 2013 Aug 8] 8: e59970 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3613375&tool=pmcentrez&rendertype=abstract
- 7 Mejia J, Mongrain R, Bertrand OF. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. J Biomech Eng [Internet] 2011; Jul [cited 2012 Jul 5] 133: 074501 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21823750
- 8 Kelly S, O’Rourke M. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models. Proc Inst Mech Eng H [Internet] 2012; Apr [cited 2012 Jul 7] 226: 288-304 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22611869
- 9 Diehm N, Sin S, Hoppe H, Baumgartner I, Büchler P. Computational biomechanics to simulate the femoropopliteal intersection during knee flexion: a preliminary study. J Endovasc Ther [Internet] 2011; Jun [cited 2012 May 1] 18: 388-396 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21679081
- 10 Demanget N, Avril S, Badel P, Orgéas L, Geindreau C, Albertini J-N, Farre JP. Computational comparison of the bending behavior of aortic stent-grafts. J Mech Behav Biomed Mater [Internet] 2012; Jan [cited 2012 Jul 2] 5: 272-282 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22100102
- 11 Calay RK, Kurujareon J, Holdo AE. Numerical simulation of respiratory flow patterns within human lung. Respir Physiol Neurobiol 2002; 130: 201-221
- 12 Beda A, Jandre FC, Giannella-Neto A. A numerical model of the respiratory modulation of pulmonary shunt and PaO2 oscillations for acute lung injury. Ann Bio med Eng 2010; 38: 993-1006
- 13 Freitas RK, Schroder W. Numerical investigation of the three-dimensional flow in a human lung model. J Biomech 2008; 41: 2446-2457
- 14 Pless D, Keck T, Wiesmiller K, Rettinger G, Aschoff AJ, Fleiter TR, Lindemann J. Numerical simulation of air temperature and airflow patterns in the human nose during expiration. Clin Otolaryngol Allied Sci 2004; 29: 642-647
- 15 Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G, Pless D. Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan. AmJRhinol 2006; 20: 219-223
- 16 Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G, Pless D. A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 2004; 114: 1037-1041
- 17 Chen XB, Lee HP, Chong VF, Wang de Y. Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity. Am J Rhinol Allergy 2010; 24: e118-e122
- 18 Chen XB, Lee HP, Chong VF, Wang de Y. Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery. Am J Rhinol Allergy [Internet]. 2011/12/22 ed 2011; 25: 388-392 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22185741
- 19 Chen XB, Lee HP, Chong VF, Wang de Y. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow – a CFD simulation model. Rhinology [Internet]. 2010/05/27 ed 2010; 48: 163-168 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20502754
- 20 Chen XB, Leong SC, Lee HP, Chong VF, Wang DY. Aerodynamic effects of inferior turbinate surgery on nasal airflow – a computational fluid dynamics model. Rhinology [Internet]. 2011/03/29 ed 2010; 48: 394-400 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21442074
- 21 Lindemann J, Keck T, Wiesmiller KM, Rettinger G, Brambs HJ, Pless D. Numerical simulation of intranasal air flow and temperature after resection of the turbinates. Rhinology 2005; 43: 24-28
- 22 Pless D, Keck T, Wiesmiller KM, Lamche R, Aschoff AJ, Lindemann J. Numerical simulation of airflow patterns and air temperature distribution during inspiration in a nose model with septal perforation. AmJRhinol 2004; 18: 357-362
- 23 Lindemann J, Brambs HJ, Keck T, Wiesmiller KM, Rettinger G, Pless D. Numerical simulation of intranasal airflow after radical sinus surgery. AmJOtolaryngol 2005; 26: 175-180
- 24 Niesen – Wikipedia [Internet]. [cited 2013 Sep 22]. Available from: http://de.wikipedia.org/wiki/Niesreiz
- 25 Wen J, Inthavong K, Tu J, Wang S. Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol [Internet] 2008; Apr 30 [cited 2014 May 23] 161: 125-135 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18378196
- 26 Leong SC, Chen XB, Lee HP, Wang DY. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology [Internet] 2010; Jun [cited 2014 Jun 5] 48: 139-145 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20502749
- 27 Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T. Visualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation. Arch Otolaryngol Head Neck Surg [Internet] 2006; Nov [cited 2014 Jun 5] 132: 1203-1209 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17116815
- 28 Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T. Flow mechanisms in the human olfactory groove: numerical simulation of nasal physiological respiration during inspiration, expiration, and sniffing. Arch Otolaryngol Head Neck Surg [Internet]. 2009/02/18 ed 2009; 135: 156-162 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19221243
- 29 Lindemann J, Sannwald D, Wiesmiller K. Age-related changes in intranasal air conditioning in the elderly. Laryngoscope 2008; 118: 1472-1475
- 30 Lindemann J, Leiacker R, Rettinger G, Keck T. The relationship between water vapour saturation of inhaled air and nasal patency. Eur Respir J 2003; 21: 313-316
- 31 Lindemann J, Leiacker R, Stehmer V, Rettinger G, Keck T. Intranasal temperature and humidity profile in patients with nasal septal perforation before and after surgical closure. Clin Otolaryngol Allied Sci [Internet]. 2001/10/27 ed 2001; 26: 1433-437 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11678954
- 32 Wiesmiller K, Keck T, Leiacker R, Lindemann J. Simultaneous in vivo measurements of intranasal air and mucosal temperature. Eur Arch Otorhinolaryngol 2007; 264: 615-619
- 33 Lindemann J, Leiacker R, Rettinger G, Keck T. Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci 2002; 27: 135-139
- 34 Lindemann J, Kuhnemann S, Stehmer V, Leiacker R, Rettinger G, Keck T. Temperature and humidity profile of the anterior nasal airways of patients with nasal septal perforation. Rhinology 2001; 39: 202-206