Semin Liver Dis 2014; 34(03): 297-317
DOI: 10.1055/s-0034-1383729
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Breach of Tolerance: Primary Biliary Cirrhosis

Lifeng Wang
1   Research Center for Biological Therapy, The Institute of Translational Hepatology, Beijing 302 Hospital, Beijing, China
,
Fu-Sheng Wang
1   Research Center for Biological Therapy, The Institute of Translational Hepatology, Beijing 302 Hospital, Beijing, China
,
Christopher Chang
2   Division of Allergy and Immunology, Department of Pediatrics, Thomas Jefferson University, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware
,
M. Eric Gershwin
3   Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2014 (online)

Abstract

In primary biliary cirrhosis (PBC), the breach of tolerance that leads to active disease involves a disruption in several layers of control, including central tolerance, peripheral anergy, a “liver tolerance effect,” and the action of T regulatory cells and their related cytokines. Each of these control mechanisms plays a role in preventing an immune response against self, but all of them act in concert to generate effective protection against autoimmunity without compromising the ability of the host immune system to mount an effective response to pathogens. At the same time, genetic susceptibility, environmental factors, including infection agents and xenobiotics, play important roles in breach of tolerance in the development of PBC.

 
  • References

  • 1 Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005; 353 (12) 1261-1273
  • 2 Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin N, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun 2013; 47: 1-16
  • 3 Selmi C, Leung PS, Sherr DH , et al. Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 2012; 39 (4) 272-284
  • 4 Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 2013; 8: 303-330
  • 5 Wildner G, Kaufmann U. What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells. Autoimmun Rev 2013; 12 (11) 1070-1075
  • 6 Mackay IR. Autoimmunity since the 1957 clonal selection theory: a little acorn to a large oak. Immunol Cell Biol 2008; 86 (1) 67-71
  • 7 Cohn M, Mitchison NA, Paul WE, Silverstein AM, Talmage DW, Weigert M. Reflections on the clonal-selection theory. Nat Rev Immunol 2007; 7 (10) 823-830
  • 8 Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172 (4379) 603-606
  • 9 Pillai S. Rethinking mechanisms of autoimmune pathogenesis. J Autoimmun 2013; 45: 97-103
  • 10 Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987; 49 (2) 273-280
  • 11 Kisielow P, Blüthmann H, Staerz UD, Steinmetz M, von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 1988; 333 (6175) 742-746
  • 12 Palmer E. Negative selection—clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol 2003; 3 (5) 383-391
  • 13 Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol 2003; 21: 139-176
  • 14 Pugliese A. Central and peripheral autoantigen presentation in immune tolerance. Immunology 2004; 111 (2) 138-146
  • 15 Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998; 280 (5361) 243-248
  • 16 Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002; 2 (1) 11-19
  • 17 Halverson R, Torres RM, Pelanda R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat Immunol 2004; 5 (6) 645-650
  • 18 Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med 1993; 177 (4) 1009-1020
  • 19 Eisenberg RA. Secondary receptor editing in the generation of autoimmunity. Autoimmun Rev 2012; 11 (11) 787-789
  • 20 Goodnow CC, Adelstein S, Basten A. The need for central and peripheral tolerance in the B cell repertoire. Science 1990; 248 (4961) 1373-1379
  • 21 Guerder S, Picarella DE, Linsley PS, Flavell RA. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor alpha leads to autoimmunity in transgenic mice. Proc Natl Acad Sci U S A 1994; 91 (11) 5138-5142
  • 22 Weigle WO. Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv Immunol 1980; 30: 159-273
  • 23 Pan PY, Ozao J, Zhou Z, Chen SH. Advancements in immune tolerance. Adv Drug Deliv Rev 2008; 60 (2) 91-105
  • 24 Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531-562
  • 25 Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol 2000; 18: 423-449
  • 26 Askenasy N. Enhanced killing activity of regulatory T cells ameliorates inflammation and autoimmunity. Autoimmun Rev 2013; 12 (10) 972-975
  • 27 Xiao J, Liu C, Li G , et al. PDCD5 negatively regulates autoimmunity by upregulating FOXP3(+) regulatory T cells and suppressing Th17 and Th1 responses. J Autoimmun 2013; 47: 34-44
  • 28 Bogdanos DP, Gao B, Gershwin ME. Liver immunology. Compr Physiol 2013; 3 (2) 567-598
  • 29 Selmi C, Mackay IR, Gershwin ME. The immunological milieu of the liver. Semin Liver Dis 2007; 27 (2) 129-139
  • 30 Invernizzi P. Liver auto-immunology: the paradox of autoimmunity in a tolerogenic organ. J Autoimmun 2013; 46: 1-6
  • 31 Tiegs G, Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun 2010; 34 (1) 1-6
  • 32 Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 2013; 12 (11) 1091-1100
  • 33 Avrameas S, Selmi C. Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun 2013; 41: 46-49
  • 34 Bailey M, Christoforidou Z, Lewis M. Evolution of immune systems: specificity and autoreactivity. Autoimmun Rev 2013; 12 (6) 643-647
  • 35 Gershwin ME, Mackay IR, Sturgess A, Coppel RL. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 1987; 138 (10) 3525-3531
  • 36 Selmi C, Mackay IR, Gershwin ME. The autoimmunity of primary biliary cirrhosis and the clonal selection theory. Immunol Cell Biol 2011; 89 (1) 70-80
  • 37 Duarte-Rey C, Bogdanos D, Yang CY , et al. Primary biliary cirrhosis and the nuclear pore complex. Autoimmun Rev 2012; 11 (12) 898-902
  • 38 Wakabayashi K, Lian ZX, Moritoki Y , et al. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 2006; 44 (5) 1240-1249
  • 39 Oertelt S, Lian ZX, Cheng CM , et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 2006; 177 (3) 1655-1660
  • 40 Irie J, Wu Y, Wicker LS , et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006; 203 (5) 1209-1219
  • 41 Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today 1993; 14 (9) 426-430
  • 42 Anaya JM. Common mechanisms of autoimmune diseases (the autoimmune tautology). Autoimmun Rev 2012; 11 (11) 781-784
  • 43 Reed LJ, Hackert ML. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem 1990; 265 (16) 8971-8974
  • 44 Meda F, Zuin M, Invernizzi P, Vergani D, Selmi C. Serum autoantibodies: a road map for the clinical hepatologist. Autoimmunity 2008; 41 (1) 27-34
  • 45 Gershwin ME, Ansari AA, Mackay IR , et al. Primary biliary cirrhosis: an orchestrated immune response against epithelial cells. Immunol Rev 2000; 174: 210-225
  • 46 Bogdanos DP, Smyk DS, Invernizzi P , et al. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2013; 12 (7) 726-740
  • 47 Long SA, Quan C, Van de Water J , et al. Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol 2001; 167 (5) 2956-2963
  • 48 Long SA, Van de Water J, Gershwin ME. Antimitochondrial antibodies in primary biliary cirrhosis: the role of xenobiotics. Autoimmun Rev 2002; 1 (1-2) 37-42
  • 49 Ehser J, Holdener M, Christen S , et al. Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun 2013; 42: 39-49
  • 50 Fujiwara K, Yokosuka O. Frequent detection of immunoglobulin M anti-herpes simplex viral antibody in patients with primary biliary cirrhosis. Hepatology 2012; 56 (1) 395
  • 51 Xu L, Shen Z, Guo L , et al. Does a betaretrovirus infection trigger primary biliary cirrhosis?. Proc Natl Acad Sci U S A 2003; 100 (14) 8454-8459
  • 52 Selmi C, Ross SR, Ansari AA , et al. Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis. Gastroenterology 2004; 127 (2) 493-501
  • 53 Morshed SA, Nishioka M, Saito I, Komiyama K, Moro I. Increased expression of Epstein-Barr virus in primary biliary cirrhosis patients. Gastroenterol Jpn 1992; 27 (6) 751-758
  • 54 Uzoegwu PN, Baum H, Williamson J. The occurrence and localization in trypanosomes and other endo-parasites of an antigen cross-reacting with mitochondrial antibodies of primary biliary cirrhosis. Comp Biochem Physiol B 1987; 88 (4) 1181-1189
  • 55 Sakly W, Jeddi M, Ghedira I. Anti-Saccharomyces cerevisiae antibodies in primary biliary cirrhosis. Dig Dis Sci 2008; 53 (7) 1983-1987
  • 56 Selmi C, De Santis M, Cavaciocchi F, Gershwin ME. Infectious agents and xenobiotics in the etiology of primary biliary cirrhosis. Dis Markers 2010; 29 (6) 287-299
  • 57 Varyani FK, West J, Card TR. An increased risk of urinary tract infection precedes development of primary biliary cirrhosis. BMC Gastroenterol 2011; 11: 95
  • 58 Mattner J, Savage PB, Leung P , et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3 (5) 304-315
  • 59 Kita H, Matsumura S, He XS , et al. Analysis of TCR antagonism and molecular mimicry of an HLA-A0201-restricted CTL epitope in primary biliary cirrhosis. Hepatology 2002; 36 (4 Pt 1) 918-926
  • 60 Ide T, Sata M, Suzuki H , et al. An experimental animal model of primary biliary cirrhosis induced by lipopolysaccharide and pyruvate dehydrogenase. Kurume Med J 1996; 43 (3) 185-188
  • 61 Haruta I, Hashimoto E, Shibata N, Kato Y, Kobayashi M, Shiratori K. Lipoteichoic acid may affect the pathogenesis of PBC-like bile duct damage and might be involved in systemic multifocal epithelial inflammations in chronic colitis-harboring TCRalpha-/-xAIM-/- mice. Autoimmunity 2007; 40 (5) 372-379
  • 62 Tarner IH, Fathman CG. Does our current understanding of the molecular basis of immune tolerance predict new therapies for autoimmune disease?. Nat Clin Pract Rheumatol 2006; 2 (9) 491-499
  • 63 Jones DE, Palmer JM, Burt AD, Walker C, Robe AJ, Kirby JA. Bacterial motif DNA as an adjuvant for the breakdown of immune self-tolerance to pyruvate dehydrogenase complex. Hepatology 2002; 36 (3) 679-686
  • 64 Agmon-Levin N, Katz BS, Shoenfeld Y. Infection and primary biliary cirrhosis. Isr Med Assoc J 2009; 11 (2) 112-115
  • 65 Dubel L, Tanaka A, Leung PS , et al. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis. Hepatology 1999; 29 (4) 1013-1018
  • 66 Selmi C, Gershwin ME. The retroviral myth of primary biliary cirrhosis: is this (finally) the end of the story?. J Hepatol 2009; 51 (2) 412-413 , author reply 414–415
  • 67 Leung PS, Wang J, Naiyanetr P , et al. Environment and primary biliary cirrhosis: electrophilic drugs and the induction of AMA. J Autoimmun 2013; 41: 79-86
  • 68 Leung PS, Quan C, Park O , et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 2003; 170 (10) 5326-5332
  • 69 Leung PS, Rossaro L, Davis PA , et al Acute Liver Failure Study Group. Antimitochondrial antibodies in acute liver failure: implications for primary biliary cirrhosis. Hepatology 2007; 46 (5) 1436-1442
  • 70 Naiyanetr P, Butler JD, Meng L , et al. Electrophile-modified lipoic derivatives of PDC-E2 elicits anti-mitochondrial antibody reactivity. J Autoimmun 2011; 37 (3) 209-216
  • 71 Rieger R, Leung PS, Jeddeloh MR , et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J Autoimmun 2006; 27 (1) 7-16
  • 72 Leung PS, Park O, Tsuneyama K , et al. Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotic immunization. J Immunol 2007; 179 (4) 2651-2657
  • 73 Wakabayashi K, Yoshida K, Leung PS , et al. Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 2009; 155 (3) 577-586
  • 74 Wakabayashi K, Lian ZX, Leung PS , et al. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 2008; 48 (2) 531-540
  • 75 Gershwin ME, Selmi C, Worman HJ , et al; USA PBC Epidemiology Group. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 2005; 42 (5) 1194-1202
  • 76 Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut 2010; 59 (4) 508-512
  • 77 Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME. The consequences of apoptosis in autoimmunity. J Autoimmun 2008; 31 (3) 257-262
  • 78 Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. J Cell Biol 2010; 189 (7) 1059-1070
  • 79 Clancy RM, Neufing PJ, Zheng P , et al. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J Clin Invest 2006; 116 (9) 2413-2422
  • 80 Allina J, Hu B, Sullivan DM , et al. T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 2006; 27 (4) 232-241
  • 81 Lleo A, Invernizzi P, Selmi C , et al. Autophagy: highlighting a novel player in the autoimmunity scenario. J Autoimmun 2007; 29 (2-3) 61-68
  • 82 Lleo A, Invernizzi P, Mackay IR, Prince H, Zhong RQ, Gershwin ME. Etiopathogenesis of primary biliary cirrhosis. World J Gastroenterol 2008; 14 (21) 3328-3337
  • 83 Gianchecchi E, Delfino DV, Fierabracci A. Recent insights on the putative role of autophagy in autoimmune diseases. Autoimmun Rev 2014; 13 (3) 231-241
  • 84 Padgett KA, Selmi C, Kenny TP , et al. Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J Autoimmun 2005; 24 (3) 209-219
  • 85 Lleo A, Bowlus CL, Yang GX , et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010; 52 (3) 987-998
  • 86 Odin JA, Huebert RC, Casciola-Rosen L, LaRusso NF, Rosen A. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 2001; 108 (2) 223-232
  • 87 Sasaki M, Ikeda H, Nakanuma Y. Activation of ATM signaling pathway is involved in oxidative stress-induced expression of mito-inhibitory p21WAF1/Cip1 in chronic non-suppurative destructive cholangitis in primary biliary cirrhosis: an immunohistochemical study. J Autoimmun 2008; 31 (1) 73-78
  • 88 Lleo A, Selmi C, Invernizzi P , et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009; 49 (3) 871-879
  • 89 Allina J, Stanca CM, Garber J , et al. Anti-CD16 autoantibodies and delayed phagocytosis of apoptotic cells in primary biliary cirrhosis. J Autoimmun 2008; 30 (4) 238-245
  • 90 Parikh-Patel A, Gold E, Mackay IR, Gershwin ME. The geoepidemiology of primary biliary cirrhosis: contrasts and comparisons with the spectrum of autoimmune diseases. Clin Immunol 1999; 91 (2) 206-218
  • 91 Selmi C, Mayo MJ, Bach N , et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004; 127 (2) 485-492
  • 92 Svyryd Y, Hernández-Molina G, Vargas F, Sánchez-Guerrero J, Segovia DA, Mutchinick OM. X chromosome monosomy in primary and overlapping autoimmune diseases. Autoimmun Rev 2012; 11 (5) 301-304
  • 93 Kelley J, Trowsdale J. Features of MHC and NK gene clusters. Transpl Immunol 2005; 14 (3-4) 129-134
  • 94 Invernizzi P, Battezzati PM, Crosignani A , et al. Peculiar HLA polymorphisms in Italian patients with primary biliary cirrhosis. J Hepatol 2003; 38 (4) 401-406
  • 95 Donaldson PT, Baragiotta A, Heneghan MA , et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology 2006; 44 (3) 667-674
  • 96 Donaldson PT. TNF gene polymorphisms in primary biliary cirrhosis: a critical appraisal. J Hepatol 1999; 31 (2) 366-368
  • 97 Juran BD, Hirschfield GM, Invernizzi P , et al; Italian PBC Genetics Study Group. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 2012; 21 (23) 5209-5221
  • 98 Liu JZ, Almarri MA, Gaffney DJ , et al; UK Primary Biliary Cirrhosis (PBC) Consortium; Wellcome Trust Case Control Consortium 3. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet 2012; 44 (10) 1137-1141
  • 99 Umemura T, Joshita S, Ichijo T , et al; Shinshu PBC Study Group. Human leukocyte antigen class II molecules confer both susceptibility and progression in Japanese patients with primary biliary cirrhosis. Hepatology 2012; 55 (2) 506-511
  • 100 Invernizzi P, Ransom M, Raychaudhuri S , et al; Italian PBC Genetics Study Group. Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes Immun 2012; 13 (6) 461-468
  • 101 Zhao DT, Liao HY, Zhang X , et al. Human leucocyte antigen alleles and haplotypes and their associations with antinuclear antibodies features in Chinese patients with primary biliary cirrhosis. Liver Int 2014; 34 (2) 220-226
  • 102 Mells GF, Kaser A, Karlsen TH. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 2013; 46: 41-54
  • 103 Liu X, Invernizzi P, Lu Y , et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010; 42 (8) 658-660
  • 104 Hirschfield GM, Liu X, Xu C , et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009; 360 (24) 2544-2555
  • 105 Hirschfield GM, Siminovitch KA. Toward the molecular dissection of primary biliary cirrhosis. Hepatology 2009; 50 (5) 1347-1350
  • 106 Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 2004; 202: 139-156
  • 107 Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol 2011; 31 (5) 980-985
  • 108 Hu G, Barnes BJ. IRF-5 is a mediator of the death receptor-induced apoptotic signaling pathway. J Biol Chem 2009; 284 (5) 2767-2777
  • 109 Krausgruber T, Blazek K, Smallie T , et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 2011; 12 (3) 231-238
  • 110 Zhang X, Ing S, Fraser A , et al. Follicular helper T cells: new insights into mechanisms of autoimmune diseases. Ochsner J 2013; 13 (1) 131-139
  • 111 Wang JH, Avitahl N, Cariappa A , et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 1998; 9 (4) 543-553
  • 112 Hirschfield GM, Xie G, Lu E , et al. Association of primary biliary cirrhosis with variants in the CLEC16A, SOCS1, SPIB and SIAE immunomodulatory genes. Genes Immun 2012; 13 (4) 328-335
  • 113 Nakamura M, Nishida N, Kawashima M , et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 2012; 91 (4) 721-728
  • 114 Li M, Zheng H, Li T, Gao P, Zhang XL, Liu DW. Cytotoxic T-lymphocyte associated antigen-4 gene polymorphisms and primary biliary cirrhosis: a systematic review. J Gastroenterol Hepatol 2012; 27 (7) 1159-1166
  • 115 Donaldson P, Agarwal K, Craggs A, Craig W, James O, Jones D. HLA and interleukin 1 gene polymorphisms in primary biliary cirrhosis: associations with disease progression and disease susceptibility. Gut 2001; 48 (3) 397-402
  • 116 Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology 2002; 35 (1) 126-131
  • 117 Gianchecchi E, Palombi M, Fierabracci A. The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev 2013; 12 (7) 717-725
  • 118 Zheng J, Petersen F, Yu X. The role of PTPN22 in autoimmunity: learning from mice. Autoimmun Rev 2014; 13 (3) 266-271
  • 119 Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011; 12 (1) 7-18
  • 120 Bogdanos DP, Smyk DS, Rigopoulou EI , et al. Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 2012; 38 (2-3) J156-J169
  • 121 Costenbader KH, Gay S, Alarcón-Riquelme ME, Iaccarino L, Doria A. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases?. Autoimmun Rev 2012; 11 (8) 604-609
  • 122 Katoh H, Zheng P, Liu Y. FOXP3: genetic and epigenetic implications for autoimmunity. J Autoimmun 2013; 41: 72-78
  • 123 Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41: 1-5
  • 124 Luo Y, Wang Y, Wang Q, Xiao R, Lu Q. Systemic sclerosis: genetics and epigenetics. J Autoimmun 2013; 41: 161-167
  • 125 Wang Q, Selmi C, Zhou X , et al. Epigenetic considerations and the clinical reevaluation of the overlap syndrome between primary biliary cirrhosis and autoimmune hepatitis. J Autoimmun 2013; 41: 140-145
  • 126 Higuchi M, Horiuchi T, Kojima T , et al. Analysis of CD40 ligand gene mutations in patients with primary biliary cirrhosis. Scand J Clin Lab Invest 1998; 58 (5) 429-432
  • 127 Lleo A, Liao J, Invernizzi P , et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology 2012; 55 (1) 153-160
  • 128 Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun 2012; 38 (2-3) J187-J192
  • 129 Borchers AT, Gershwin ME. Sociological differences between women and men: implications for autoimmunity. Autoimmun Rev 2012; 11 (6-7) A413-A421
  • 130 Lee TP, Chiang BL. Sex differences in spontaneous versus induced animal models of autoimmunity. Autoimmun Rev 2012; 11 (6-7) A422-A429
  • 131 Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and autoimmune disease. Autoimmun Rev 2012; 11 (6-7) A386-A392
  • 132 Nussinovitch U, Shoenfeld Y. The role of gender and organ specific autoimmunity. Autoimmun Rev 2012; 11 (6-7) A377-A385
  • 133 Oertelt-Prigione S. The influence of sex and gender on the immune response. Autoimmun Rev 2012; 11 (6-7) A479-A485
  • 134 Pennell LM, Galligan CL, Fish EN. Sex affects immunity. J Autoimmun 2012; 38 (2-3) J282-J291
  • 135 Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-Villarraga A, Anaya JM. Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J Autoimmun 2012; 38 (2-3) J109-J119
  • 136 Rogers MA, Levine DA, Blumberg N, Fisher GG, Kabeto M, Langa KM. Antigenic challenge in the etiology of autoimmune disease in women. J Autoimmun 2012; 38 (2-3) J97-J102
  • 137 Selmi C, Brunetta E, Raimondo MG, Meroni PL. The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev 2012; 11 (6-7) A531-A537
  • 138 Shoenfeld Y, Tincani A, Gershwin ME. Sex gender and autoimmunity. J Autoimmun 2012; 38 (2-3) J71-J73
  • 139 Amur S, Parekh A, Mummaneni P. Sex differences and genomics in autoimmune diseases. J Autoimmun 2012; 38 (2-3) J254-J265
  • 140 Mitchell MM, Lleo A, Zammataro L , et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 2011; 6 (1) 95-102
  • 141 Lleo A, Oertelt-Prigione S, Bianchi I , et al. Y chromosome loss in male patients with primary biliary cirrhosis. J Autoimmun 2013; 41: 87-91
  • 142 Podda M, Selmi C, Lleo A, Moroni L, Invernizzi P. The limitations and hidden gems of the epidemiology of primary biliary cirrhosis. J Autoimmun 2013; 46: 81-87
  • 143 Padgett KA, Lan RY, Leung PC , et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 2009; 32 (3-4) 246-253
  • 144 Qin B, Huang F, Liang Y, Yang Z, Zhong R. Analysis of altered microRNA expression profiles in peripheral blood mononuclear cells from patients with primary biliary cirrhosis. J Gastroenterol Hepatol 2013; 28 (3) 543-550
  • 145 Banales JM, Sáez E, Uriz M , et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012; 56 (2) 687-697
  • 146 Ninomiya M, Kondo Y, Funayama R , et al. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS ONE 2013; 8 (6) e66086
  • 147 Qian C, Chen SX, Ren CL, Zhong RQ, Deng AM, Qin Q. [Abnormal expression of miR-let-7b in primary biliary cirrhosis and its clinical significance]. Zhonghua Gan Zang Bing Za Zhi 2013; 21 (7) 533-536
  • 148 Selmi C, Invernizzi P, Miozzo M, Podda M, Gershwin ME. Primary biliary cirrhosis: does X mark the spot?. Autoimmun Rev 2004; 3 (7-8) 493-499
  • 149 Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update 2005; 11 (4) 411-423
  • 150 Invernizzi P, Miozzo M, Battezzati PM , et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet 2004; 363 (9408) 533-535
  • 151 Borchers AT, Naguwa SM, Keen CL, Gershwin ME. The implications of autoimmunity and pregnancy. J Autoimmun 2010; 34 (03) J287-J299
  • 152 Bogdanos D, Pusl T, Rust C, Vergani D, Beuers U. Primary biliary cirrhosis following Lactobacillus vaccination for recurrent vaginitis. J Hepatol 2008; 49 (3) 466-473
  • 153 Selmi C, Lleo A, Pasini S, Zuin M, Gershwin ME. Innate immunity and primary biliary cirrhosis. Curr Mol Med 2009; 9 (1) 45-51
  • 154 Kikuchi K, Lian ZX, Yang GX , et al. Bacterial CpG induces hyper-IgM production in CD27(+) memory B cells in primary biliary cirrhosis. Gastroenterology 2005; 128 (2) 304-312
  • 155 Medzhitov R, Janeway Jr CA. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296 (5566) 298-300
  • 156 Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22 (2) 240-273 Table of Contents
  • 157 Mao TK, Lian ZX, Selmi C , et al. Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology 2005; 42 (4) 802-808
  • 158 Moritoki Y, Lian ZX, Wulff H , et al. AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology 2007; 45 (2) 314-322
  • 159 Shimoda S, Harada K, Niiro H , et al. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 2011; 53 (4) 1270-1281
  • 160 Banchereau J, Briere F, Caux C , et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767-811
  • 161 Demetris AJ, Sever C, Kakizoe S, Oguma S, Starzl TE, Jaffe R. S100 protein positive dendritic cells in primary biliary cirrhosis and other chronic inflammatory liver diseases. Relevance to pathogenesis?. Am J Pathol 1989; 134 (4) 741-747
  • 162 Tanimoto K, Akbar SM, Michitaka K, Onji M. Immunohistochemical localization of antigen presenting cells in liver from patients with primary biliary cirrhosis; highly restricted distribution of CD83-positive activated dendritic cells. Pathol Res Pract 1999; 195 (3) 157-162
  • 163 Akbar SM, Yamamoto K, Miyakawa H , et al. Peripheral blood T-cell responses to pyruvate dehydrogenase complex in primary biliary cirrhosis: role of antigen-presenting dendritic cells. Eur J Clin Invest 2001; 31 (7) 639-646
  • 164 Kita H, Lian ZX, Van de Water J , et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002; 195 (1) 113-123
  • 165 Hiasa Y, Akbar SM, Abe M, Michitaka K, Horiike N, Onji M. Dendritic cell subtypes in autoimmune liver diseases; decreased expression of HLA DR and CD123 on type 2 dendritic cells. Hepatol Res 2002; 22 (4) 241-249
  • 166 Harada K, Shimoda S, Ikeda H , et al. Significance of periductal Langerhans cells and biliary epithelial cell-derived macrophage inflammatory protein-3. α in the pathogenesis of primary biliary cirrhosis. Liver Int 2011; 31 (2) 245-253
  • 167 Vandenbark AA, Meza-Romero R, Benedek G , et al. A novel regulatory pathway for autoimmune disease: binding of partial MHC class II constructs to monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. J Autoimmun 2013; 40: 96-110
  • 168 Honda Y, Yamagiwa S, Matsuda Y, Takamura M, Ichida T, Aoyagi Y. Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. J Hepatol 2007; 47 (3) 404-411
  • 169 Takii Y, Nakamura M, Ito M , et al. Enhanced expression of type I interferon and toll-like receptor-3 in primary biliary cirrhosis. Lab Invest 2005; 85 (7) 908-920
  • 170 Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J Autoimmun 2013; 40: 28-44
  • 171 Samavedam UK, Kalies K, Scheller J , et al. Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. J Autoimmun 2013; 40: 74-85
  • 172 Selmi C, Meroni PL, Gershwin ME. Primary biliary cirrhosis and Sjögren's syndrome: autoimmune epithelitis. J Autoimmun 2012; 39 (1-2) 34-42
  • 173 Van den Oord JJ, Sciot R, Desmet VJ. Expression of MHC products by normal and abnormal bile duct epithelium. J Hepatol 1986; 3 (3) 310-317
  • 174 Ayres RC, Neuberger JM, Shaw J, Joplin R, Adams DH. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 1993; 34 (9) 1245-1249
  • 175 Leon MP, Bassendine MF, Gibbs P, Thick M, Kirby JA. Immunogenicity of biliary epithelium: study of the adhesive interaction with lymphocytes. Gastroenterology 1997; 112 (3) 968-977
  • 176 Tsuneyama K, Van de Water J, Leung PS , et al. Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression. Hepatology 1995; 21 (4) 1031-1037
  • 177 Ballardini G, Mirakian R, Bianchi FB, Pisi E, Doniach D, Bottazzo GF. Aberrant expression of HLA-DR antigens on bileduct epithelium in primary biliary cirrhosis: relevance to pathogenesis. Lancet 1984; 2 (8410) 1009-1013
  • 178 Cha S, Leung PS, Gershwin ME, Fletcher MP, Ansari AA, Coppel RL. Combinatorial autoantibodies to dihydrolipoamide acetyltransferase, the major autoantigen of primary biliary cirrhosis. Proc Natl Acad Sci U S A 1993; 90 (6) 2527-2531
  • 179 Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 2009; 31 (3) 309-322
  • 180 Sakisaka S, Gondo K, Yoshitake M , et al. Functional differences between hepatocytes and biliary epithelial cells in handling polymeric immunoglobulin A2 in humans, rats, and guinea pigs. Hepatology 1996; 24 (2) 398-406
  • 181 Fukushima N, Nalbandian G, Van De Water J , et al. Characterization of recombinant monoclonal IgA anti-PDC-E2 autoantibodies derived from patients with PBC. Hepatology 2002; 36 (6) 1383-1392
  • 182 Johansson S, Berg L, Hall H, Höglund P. NK cells: elusive players in autoimmunity. Trends Immunol 2005; 26 (11) 613-618
  • 183 Panasiuk A, Prokopowicz D, Zak J. Peripheral blood T, B lymphocytes and NK cells in primary biliary cirrhosis. Rocz Akad Med Bialymst 2001; 46: 231-239
  • 184 Chuang YH, Lian ZX, Tsuneyama K , et al. Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 2006; 26 (4) 232-240
  • 185 Shimoda S, Tsuneyama K, Kikuchi K , et al. The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol 2012; 168 (3) 279-284
  • 186 Hudspeth K, Pontarini E, Tentorio P , et al. The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun 2013; 46: 55-65
  • 187 Kita H, Naidenko OV, Kronenberg M , et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002; 123 (4) 1031-1043
  • 188 Chuang YH, Lian ZX, Yang GX , et al. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008; 47 (2) 571-580
  • 189 Wu SJ, Yang YH, Tsuneyama K , et al. Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 2011; 53 (3) 915-925
  • 190 Harada K, Van de Water J, Leung PS , et al. In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology 1997; 25 (4) 791-796
  • 191 Nagano T, Yamamoto K, Matsumoto S , et al. Cytokine profile in the liver of primary biliary cirrhosis. J Clin Immunol 1999; 19 (6) 422-427
  • 192 Lan RY, Salunga TL, Tsuneyama K , et al. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 2009; 32 (1) 43-51
  • 193 Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 2013; 46: 97-111
  • 194 Fenoglio D, Bernuzzi F, Battaglia F , et al. Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases. Autoimmun Rev 2012; 12 (2) 300-304
  • 195 Lan RY, Cheng C, Lian ZX , et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 2006; 43 (4) 729-737
  • 196 Zhang W, Sharma R, Ju ST , et al. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology 2009; 49 (2) 545-552
  • 197 Mayer CT, Tian L, Hesse C , et al. Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun 2014; 50: 23-32
  • 198 Bernuzzi F, Fenoglio D, Battaglia F , et al. Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun 2010; 35 (3) 176-180
  • 199 Oertelt-Prigione S, Mao TK, Selmi C , et al. Impaired indoleamine 2,3-dioxygenase production contributes to the development of autoimmunity in primary biliary cirrhosis. Autoimmunity 2008; 41 (1) 92-99
  • 200 Selmi C, Podda M, Gershwin ME. Old and rising stars in the lymphoid liver. Semin Immunopathol 2009; 31 (3) 279-282
  • 201 Shimoda S, Van de Water J, Ansari A , et al. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest 1998; 102 (10) 1831-1840
  • 202 Shimoda S, Harada K, Niiro H , et al. Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating mononuclear cells. Hepatology 2008; 47 (3) 958-965
  • 203 Shimoda S, Ishikawa F, Kamihira T , et al. Autoreactive T-cell responses in primary biliary cirrhosis are proinflammatory whereas those of controls are regulatory. Gastroenterology 2006; 131 (2) 606-618
  • 204 Shimoda S, Miyakawa H, Nakamura M , et al. CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis. J Autoimmun 2008; 31 (2) 110-115
  • 205 Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 1995; 181 (5) 1835-1845
  • 206 Shimoda S, Nakamura M, Ishibashi H , et al. Molecular mimicry of mitochondrial and nuclear autoantigens in primary biliary cirrhosis. Gastroenterology 2003; 124 (7) 1915-1925
  • 207 Shimoda S, Nakamura M, Shigematsu H , et al. Mimicry peptides of human PDC-E2 163-176 peptide, the immunodominant T-cell epitope of primary biliary cirrhosis. Hepatology 2000; 31 (6) 1212-1216
  • 208 Kita H, Matsumura S, He XS , et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002; 109 (9) 1231-1240
  • 209 Chabot S, Fakhfakh A, Béland K , et al. Mouse liver-specific CD8(+) T-cells encounter their cognate antigen and acquire capacity to destroy target hepatocytes. J Autoimmun 2013; 42: 19-28
  • 210 Tanaka A, Nezu S, Uegaki S , et al. The clinical significance of IgA antimitochondrial antibodies in sera and saliva in primary biliary cirrhosis. Ann N Y Acad Sci 2007; 1107: 259-270
  • 211 Kim WR, Poterucha JJ, Jorgensen RA , et al. Does antimitochondrial antibody status affect response to treatment in patients with primary biliary cirrhosis? Outcomes of ursodeoxycholic acid therapy and liver transplantation. Hepatology 1997; 26 (1) 22-26
  • 212 Invernizzi P, Crosignani A, Battezzati PM , et al. Comparison of the clinical features and clinical course of antimitochondrial antibody-positive and -negative primary biliary cirrhosis. Hepatology 1997; 25 (5) 1090-1095
  • 213 Cambridge G, Perry HC, Nogueira L , et al. The effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment. J Autoimmun 2014; 50: 67-76
  • 214 Moritoki Y, Lian ZX, Ohsugi Y, Ueno Y, Gershwin ME. B cells and autoimmune liver diseases. Autoimmun Rev 2006; 5 (7) 449-457
  • 215 Takahashi T, Miura T, Nakamura J , et al. Plasma cells and the chronic nonsuppurative destructive cholangitis of primary biliary cirrhosis. Hepatology 2012; 55 (3) 846-855
  • 216 Moritoki Y, Lian ZX, Lindor K , et al. B-cell depletion with anti-CD20 ameliorates autoimmune cholangitis but exacerbates colitis in transforming growth factor-beta receptor II dominant negative mice. Hepatology 2009; 50 (6) 1893-1903
  • 217 Tsuda M, Moritoki Y, Lian ZX , et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology 2012; 55 (2) 512-521
  • 218 Dhirapong A, Lleo A, Yang GX , et al. B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 2011; 53 (2) 527-535
  • 219 Angulo P, Jorgensen RA, Keach JC, Dickson ER, Smith C, Lindor KD. Oral budesonide in the treatment of patients with primary biliary cirrhosis with a suboptimal response to ursodeoxycholic acid. Hepatology 2000; 31 (2) 318-323
  • 220 Kaplan MM, Bonder A, Ruthazer R, Bonis PA. Methotrexate in patients with primary biliary cirrhosis who respond incompletely to treatment with ursodeoxycholic acid. Dig Dis Sci 2010; 55 (11) 3207-3217
  • 221 Munoz SJ. Cyclosporine in primary biliary cirrhosis. N Engl J Med 1990; 323 (19) 1352
  • 222 Gong Y, Christensen E, Gluud C. Azathioprine for primary biliary cirrhosis. Cochrane Database Syst Rev 2007; (3) CD006000
  • 223 Wolfraim LA. Treating autoimmune diseases through restoration of antigen-specific immune tolerance. Arch Immunol Ther Exp (Warsz) 2006; 54 (1) 1-13
  • 224 Yin YF, Zhang X. B cell depletion in treating primary biliary cirrhosis: pros and cons. World J Gastroenterol 2012; 18 (30) 3938-3940
  • 225 Kawata K, Tsuda M, Yang GX , et al. Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLoS ONE 2013; 8 (9) e74225
  • 226 Cingoz O. Ustekinumab. MAbs 2009; 1 (3) 216-221
  • 227 Kavanaugh A, Ritchlin C, Rahman P , et al; PSUMMIT-1 and 2 Study Groups. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis 2014; 73 (6) 1000-1006
  • 228 Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 2014; 13 (3) 272-280
  • 229 Chuang YH, Lian ZX, Cheng CM , et al. Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J Autoimmun 2005; 25 (2) 126-132
  • 230 Dhirapong A, Yang GX, Nadler S , et al. Therapeutic effect of cytotoxic T lymphocyte antigen 4/immunoglobulin on a murine model of primary biliary cirrhosis. Hepatology 2013; 57 (2) 708-715
  • 231 Romo-Tena J, Gómez-Martín D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev 2013; 12 (12) 1171-1176
  • 232 Walker LS. Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun 2013; 45: 49-57
  • 233 Figueroa FE, Carrión F, Villanueva S, Khoury M. Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol Res 2012; 45 (3) 269-277
  • 234 Wang D, Zhang H, Liang J , et al. Effect of allogeneic bone marrow-derived mesenchymal stem cells transplantation in a polyI:C-induced primary biliary cirrhosis mouse model. Clin Exp Med 2011; 11 (1) 25-32
  • 235 Wang L, Li J, Liu H , et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 2013; 28 (Suppl. 01) 85-92
  • 236 Van Brussel I, Lee WP, Rombouts M , et al. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality?. Autoimmun Rev 2014; 13 (2) 138-150
  • 237 Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997; 18 (7) 335-343
  • 238 Suzuki A, Van de Water J, Gershwin ME, Jorgensen R, Angulo P, Lindor K. Oral tolerance and pyruvate dehydrogenase in patients with primary biliary cirrhosis. Dev Immunol 2002; 9 (2) 55-61
  • 239 Goudy KS, Annoni A, Naldini L, Roncarolo MG. Manipulating immune tolerance with micro-RNA regulated gene therapy. Front Microbiol 2011; 2: 221
  • 240 Pauley KM, Cha S. RNAi therapeutics in autoimmune disease. Pharmaceuticals (Basel) 2013; 6 (3) 287-294
  • 241 Ando Y, Yang GX, Kenny TP , et al. Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse. J Autoimmun 2013; 41: 111-119
  • 242 Singh RP, Massachi I, Manickavel S , et al. The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 2013; 12 (12) 1160-1165
  • 243 Albani S, Koffeman EC, Prakken B. Induction of immune tolerance in the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2011; 7 (5) 272-281
  • 244 Imam MH, Talwalkar JA, Lindor KD. Clinical management of autoimmune biliary diseases. J Autoimmun 2013; 46: 88-96
  • 245 Bogdanos DP, Baum H, Sharma UC , et al. Antibodies against homologous microbial caseinolytic proteases P characterise primary biliary cirrhosis. J Hepatol 2002; 36 (1) 14-21
  • 246 Kaplan MM. Novosphingobium aromaticivorans: a potential initiator of primary biliary cirrhosis. Am J Gastroenterol 2004; 99 (11) 2147-2149
  • 247 Goo MJ, Ki MR, Lee HR , et al. Primary biliary cirrhosis, similar to that in human beings, in a male C57BL/6 mouse infected with Helicobacter pylori . Eur J Gastroenterol Hepatol 2008; 20 (10) 1045-1048
  • 248 Bogdanos DP, Baum H, Gunsar F , et al. Extensive homology between the major immunodominant mitochondrial antigen in primary biliary cirrhosis and Helicobacter pylori does not lead to immunological cross-reactivity. Scand J Gastroenterol 2004; 39 (10) 981-987
  • 249 Bogdanos DP, Baum H, Okamoto M , et al. Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology 2005; 42 (2) 458-465
  • 250 Berg CP, Kannan TR, Klein R , et al. Mycoplasma antigens as a possible trigger for the induction of antimitochondrial antibodies in primary biliary cirrhosis. Liver Int 2009; 29 (6) 797-809
  • 251 Bogdanos DP, Pares A, Baum H , et al. Disease-specific cross-reactivity between mimicking peptides of heat shock protein of Mycobacterium gordonae and dominant epitope of E2 subunit of pyruvate dehydrogenase is common in Spanish but not British patients with primary biliary cirrhosis. J Autoimmun 2004; 22 (4) 353-362
  • 252 Bogdanos DP, Koutsoumpas A, Baum H, Vergani D. Borrelia burgdorferi: a new self-mimicking trigger in primary biliary cirrhosis. Dig Liver Dis 2006; 38 (10) 781-782 , author reply 782–783
  • 253 Zhao J, Zhao S, Zhou G , et al. Altered biliary epithelial cell and monocyte responses to lipopolysaccharide as a TLR ligand in patients with primary biliary cirrhosis. Scand J Gastroenterol 2011; 46 (4) 485-494
  • 254 Nakamura M, Ishibashi H, Matsui M , et al. Peripheral B lymphocyte repertoire to mitochondrial antigen in primary biliary cirrhosis—positive correlation between the disease activity and the frequency of circulating B lymphocytes specific for pyruvate dehydrogenase complex. Autoimmunity 1995; 21 (4) 253-262
  • 255 Silveira MG, Lindor KD. Obeticholic acid and budesonide for the treatment of primary biliary cirrhosis. Expert Opin Pharmacother 2014; 15 (3) 365-372