Klinische Neurophysiologie 2014; 45(04): 201-206
DOI: 10.1055/s-0034-1383563
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Periphere Nervenübererregbarkeit – Krampf-Faszikulationssyndrom, Neuromyotonie und Morvan Syndrom

Peripheral Nerve Hyperexcitability – Cramp-Fasciculation Syndrome, Neuromyotonia and Morvan’s Syndrome
W. N. Löscher
1   Univ-Klinik für Neurologie, Medizinische Universität Innsbruck, Österreich
,
H. Cetin
2   Univ-Klinik für Neurologie, Medizinische Universität Wien, Österreich
,
W. J. Schulte-Mattler
3   Neurologische Klinik und Poliklinik, Universität Regensburg, Deutschland
,
J. V. Wanschitz
1   Univ-Klinik für Neurologie, Medizinische Universität Innsbruck, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
27 August 2014 (online)

Zusammenfassung

Periphere Nervenübererregbarkeitssyndrome sind seltene Erkrankungen die sich je nach Schweregrad und Ausprägung durch verschiedene klinische und elektrophysiologische Befunde auszeichnen. Bei dem Krampf-Faszikulationssyndrom (KFS) finden sich entsprechend Muskelkrämpfe und Faszikulationen, die sich auch elektromyografisch nachweisen lassen. Die Neuromyotonie (NMT) ist klinisch durch Muskelkrämpfe, Muskelzuckungen, Myokymien, verzögerte Muskelrelaxation, Parästhesien und vermehrtes Schwitzen gekennzeichnet und elektromyografisch finden sich neben Doublets, Triplets und Multiplets die charakteristischen hochfrequenten neuromyotonen Entladungen. Das Morvan Syndrom erweitert die Neuromyotonie um Dysautonomie, Veränderungen der Kognition und des Verhaltens. Autoantikörper, die nicht gegen die VGKC selbst gerichtet sind, sondern gegen Proteine, die mit den VGKC einen Komplex bilden (Contactin-2, CASPR-2 und LGI-1) finden sich in bis zu 25% beim KFS, in bis zu 50% bei der NMT und bis zu 90% beim Morvan Syndrom. NMT und Morvan Syndrom kommen als paraneoplastische Syndrome vor, vor allem assoziiert mit Thymom oder kleinzelligem Bronchuskarzinom. Bei paraneoplastischen Formen kann die Behandlung des Tumors zu Besserungen der neuromyotonen Symptome führen. Zur symptomatischen Behandlung werden Na-Kanal Blocker wie z. B. Carbamazepin eingesetzt, zur Behandlung autoimmuner Formen intravenöse Immunglobuline oder Plasmapharese.

Abstract

Syndromes of peripheral nerve hyperexcitability represent a group of rare syndromes with distinct clinical and electrophysiological features. The mildest form, the cramp-fasciculation syndrome (CFS) is characterised by muscle cramps and fasciculations which are also seen on electromyographic recordings (EMG). In neuromyotonia (NMT) patients complain about cramps, fasciculations, muscle stiffness, paraesthesia and increased sweating. EMG shows typical high-frequency neuromyotonic discharges, doublets, triplets and multiplets. Features of Morvan’s syndrome are neuromyotonia, dysautonomia and behavioural and cognitive changes. Antibodies against proteins which interact with voltage-gated potassium channels (Contactin-2, CASPR-2 und LGI-1) are found in up to 25, 50 and 90% in patients with CFS, NMT and Morvan’s syndrome. NMT and Morvan’s syndrome can occur as paraneoplastic syndromes associated with thymoma and small-cell lung cancer. Paraneoplastic hyperexcitability disorders can respond to successful treatment of the tumour, autoimmune forms may respond to plasma exchange or intravenous immunoglobulins. Sodium channel blocking agents, e. g., carbamazepine, are used as symptomatic treatment.

 
  • Literatur

  • 1 Hart IK, Maddison P, Newsom-Davis J et al. Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 2002; 125 (Suppl. 08) 1887-1895
  • 2 Maddison P. Neuromyotonia. Clin Neurophysiol 2006; 117: 2118-2127
  • 3 Liewluck T, Klein CJ, Jones Jr LK. Cramp-fasciculation syndrome in patients with and without neural autoantibodies. Muscle Nerve 2013; 49: 351-356
  • 4 Tahmoush AJ, Alonso RJ, Tahmoush GP et al. Cramp-fasciculation syndrome: a treatable hyperexcitable peripheral nerve disorder. Neurology 1991; 41: 1021-1024
  • 5 Simon NG, Reddel SW, Kiernan MC et al. Muscle-specific kinase antibodies: A novel cause of peripheral nerve hyperexcitability?. Muscle Nerve. 2013; 48: 819-823
  • 6 De Carvalho M, Swash M. Fasciculation-cramp syndrome preceding anterior horn cell disease: an intermediate syndrome?. J Neurol Neurosurg Psychiatr 2011; 82: 459-461
  • 7 Löscher WN, Wanschitz J, Reiners K et al. Morvan’s syndrome: clinical, laboratory, and in vitro electrophysiological studies. Muscle Nerve 2004; 30: 157-163
  • 8 Lee W, Day TJ, Williams DR. Clinical, laboratory and electrophysiological features of Morvan’s Fibrillary Chorea. J Clin Neurosci 2013; 20: 1246-1249
  • 9 Liguori R, Vincent A, Clover L et al. Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001; 124 (Suppl. 12) 2417-2426
  • 10 Arimura K, Arimura Y, Ng A et al. The origin of spontaneous discharges in acquired neuromyotonia. A Macro EMG study. Clin Neurophysiol 2005; 116: 1835-1839
  • 11 Gutmann L, Gutmann L. Myokymia and neuromyotonia 2004. J Neurol 2004; 251: 138-142
  • 12 Maddison P, Mills KR, Newsom-Davis J. Clinical electrophysiological characterization of the acquired neuromyotonia phenotype of autoimmune peripheral nerve hyperexcitability. Muscle Nerve 2006; 33: 801-808
  • 13 Grisold W, Mamoli B. The syndrome of continuous muscle fibre activity following gold therapy. J Neurol 1984; 231: 244-249
  • 14 Mills KR. Characteristics of fasciculations in amyotrophic lateral sclerosis and the benign fasciculation syndrome. Brain 2010; 133: 3458-3469
  • 15 Daube JR, Rubin DI. Needle electromyography. Muscle Nerve 2009; 39: 244-270
  • 16 Benatar M, Chapman KM, Rutkove SB. Repetitive nerve stimulation for the evaluation of peripheral nerve hyperexcitability. J Neurol Sci 2004; 221: 47-52
  • 17 Bodkin CL, Kennelly KD, Boylan KB et al. Defining normal duration for afterdischarges with repetitive nerve stimulation: a pilot study. J Clin Neurophysiol 2009; 26: 45-49
  • 18 Harrison TB, Benatar M. Accuracy of repetitive nerve stimulation for diagnosis of the cramp-fasciculation syndrome. Muscle Nerve 2007; 35: 776-780
  • 19 Rubio-Agusti I, Perez-Miralles F, Sevilla T et al. Peripheral nerve hyperexcitability: A clinical and immunologic study of 38 patients. Neurology 2011; 76: 172-178
  • 20 Irani SR, Pettingill P, Kleopa KA et al. Morvan syndrome: Clinical and serological observations in 29 cases. Ann Neurol 2012; 72: 241-255
  • 21 Tomimitsu H, Arimura K, Nagado T et al. Mechanism of action of voltage-gated K+ channel antibodies in acquired neuromyotonia. Ann Neurol 2004; 56: 440-444
  • 22 Shillito P, Molenaar PC, Vincent A et al. Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann Neurol 1995; 38: 714-722
  • 23 Klein CJ, Lennon VA, Aston PA et al. Insights From LGI1 and CASPR2 Potassium Channel Complex Autoantibody Subtyping. JAMA Neurol 2013; 70: 229
  • 24 Sagane K, Hayakawa K, Kai J et al. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci 2005; 6: 33
  • 25 Poliak S. Juxtaparanodal clustering of Shaker-like K+channels in myelinated axons depends on Caspr2 and TAG-1. The Journal of Cell Biology 2003; 162: 1149-1160
  • 26 Irani SR, Alexander S, Waters P et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010; 133: 2734-2748
  • 27 Vernino S, Lennon VA. Ion channel and striational antibodies define a continuum of autoimmune neuromuscular hyperexcitability. Muscle Nerve 2002; 26: 702-707
  • 28 Farrugia ME, Vincent A. Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol 2010; 23: 489-495
  • 29 Jurkat-Rott K, Lerche H, Weber Y et al. Hereditary channelopathies in neurology. Adv Exp Med Biol 2010; 686: 305-334
  • 30 Zimoń M, Baets J, Almeida-Souza L et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet 2012; 44: 1080-1083
  • 31 Pöschl P, Schulte-Mattler WJ. Myotone Phänomene. Klin Neurophysiol 2010; 41: 1-8
  • 32 Alexopoulos H, Akrivou S, Dalakas MC. Glycine receptor antibodies in stiff-person syndrome and other GAD-positive CNS disorders. Neurology 2013; 81: 1962-1964
  • 33 Rakocevic G, Floeter MK. Autoimmune stiff person syndrome and related myelopathies: Understanding of electrophysiological and immunological processes. Muscle Nerve 2012; 45: 623-634
  • 34 Skeie GO, Apostolski S, Evoli A et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol 2010; 17: 893-902