Planta Med 2015; 81(2): 152-159
DOI: 10.1055/s-0034-1383404
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Bioactive Sulfated Saponins from Sea Cucumber Holothuria moebii

Siran Yu*
1   Ocean College, Zhejiang University, Hangzhou, China
,
Xuewei Ye*
1   Ocean College, Zhejiang University, Hangzhou, China
,
Haocai Huang
1   Ocean College, Zhejiang University, Hangzhou, China
,
Rui Peng
1   Ocean College, Zhejiang University, Hangzhou, China
,
Zhenghua Su
1   Ocean College, Zhejiang University, Hangzhou, China
,
Xiao-Yuan Lian
2   College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
,
Zhizhen Zhang
1   Ocean College, Zhejiang University, Hangzhou, China
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 11. Juli 2014
revised 12. November 2014

accepted 18. November 2014

Publikationsdatum:
27. Januar 2015 (online)

Abstract

The bioactive ingredients of sea cucumber Holothuria moebii were investigated, and four sulfated saponins (14) and one desulfated saponin (3B) with an unusual 3,4-epoxy xylose were obtained from this study. Compound 2 is a new triterpenoid saponin and 3B is a new artificial compound. On the basis of the extensive NMR and HRESIMS data, their structures were assigned as 3-O-[β-D-quinovopyranosyl-(1 → 2)-4-sodium sulfato-β-D-xylopyranosyl]-25-acetoxy-22-oxo-9(11)-holostene-3β,12α,17α-triol (2) and 3-O-[β-D-quinovopyranosyl-(1 → 2)-3,4-epoxy-β-xylopyranosyl]-22,25-epoxy-9(11)-holostene-3β,12α,17α-triol (3B). Compounds 14 showed activity suppressing the proliferation of four different glioma cells with IC50 values ranging from 0.99 to 8.64 µM. New saponin 2 significantly induced apoptosis in human glioblastoma U87-MG cells and reduced the expression levels of several glioma metabolic enzymes of glycolysis and glutaminolysis. This study reveals for the first time that selectively targeting multiple glioma metabolic regulators of glycolysis and glutaminolysis might be one of the anti-glioma mechanisms of saponin 2.

* These authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Kim SK, Himaya SW. Triterpene glycosides from sea cucumbers and their biological activities. Adv Food Nutr Res 2012; 65: 297-319
  • 2 Guan HS, Wang SG. Chinese Marine Materia Medica (Vol. III). Shanghai: Shanghai Scientific and Technical Publishers; 1999: 561-598
  • 3 Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods – a review. Mar Drugs 2011; 9: 1761-1805
  • 4 Xin W, Ye X, Yu S, Lian XY, Zhang Z. New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar Drugs 2012; 10: 2388-2402
  • 5 Guo X, Shen L, Tong YH, Zhang J, Wu G, He Q, Yu SR, Ye XW, Zou LB, Zhang ZZ, Lian XY. Antitumor activity of caffeic acid 3,4-dihydroxyphenethyl ester and its pharmacokinetic and metabolic properties. Phytomedicine 2013; 20: 904-912
  • 6 Yu S, Ye X, Xin W, Xu K, Lian XY, Zhang Z. Fatsioside A, a rare baccharane-type glycoside inhibiting the growth of glioma cells from the fruits of Fatsia japonica . Planta Med 2014; 80: 315-320
  • 7 Yu S, Ye X, Chen L, Lian XY, Zhang Z. Polyoxygenated 24,28-epoxyergosterols inhibiting the proliferation of glioma cells from sea anemone Anthopleura midori . Steroids 2014; 88: 19-25
  • 8 Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 2010; 1: 552-577
  • 9 Ru P, Williams TM, Chakravarti A, Guo D. Tumor metabolism of malignant gliomas. Cancers 2013; 5: 1469-1484
  • 10 Kitagawa I, Nishino T, Kobayashi M, Matsuno T, Akutsu H, Kyogoku Y. Marine natural products. VIII. Bioactive triterpene-oligoglycosides from the sea cucumber Holothuria leucospilota Brandt (2). Structure of holothurin A. Chem Pharm Bull 1981; 29: 1951-1956
  • 11 Kitagawa I, Nishino T, Kobayashi M, Matsuno T, Akutsu H, Kyogoku Y. Marine natural products. VII. Bioactive triterpene-oligoglycosides from the sea cucumber Holothuria leucospilota Brandt. Structure of holothurin B. Chem Pharm Bull 1981; 29: 1942-1950
  • 12 Kobayashi M, Hori M, Kan K, Yasuzawa T, Matsui M, Suzuki S, Kitagawa I. Marine natural products. XXVII. Distribution of lanostane-type triterpene oligoglycosides in ten kinds of Okinawan sea cucumbers. Chem Pharm Bull 1991; 39: 2282-2287
  • 13 Yuan WH, Yi YH, Li L, Liu BS, Zhang HW, Sun P. Two triterpene glycosides from the sea cucumber Bohadschia marmorata Jaeger. Chin Chem Lett 2008; 19: 457-460
  • 14 Wu LJ. Natural medicinal chemistry. Beijing: Peopleʼs Medical Publishing House; 2011: 98-100
  • 15 Patil SA, Hosni-Ahmed A, Jones TS, Patil R, Pfeffer LM, Miller DD. Novel approaches to glioma drug design and drug screening. Expert Opin Drug Discov 2013; 8: 1135-1151
  • 16 Qi XC, Xie DJ, Yan QF, Wang YR, Zhu YX, Qian C, Yang SX. LRIG1 dictates the chemo-sensitivity of temozolomide (TMZ) in U251 glioblastoma cells via down-regulation of EGFR/topoisomerase-2/Bcl-2. Biochem Biophys Res Commun 2013; 437: 565-572
  • 17 Low SY, Ho YK, Too HP, Yap CT, Ng WH. MicroRNA as potential modulators in chemoresistant high-grade gliomas. J Clin Neurosci 2014; 21: 395-400
  • 18 Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003; 23: 363-398
  • 19 Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011; 208: 313-326
  • 20 Kessler R, Bleichert F, Warnke JP, Eschrich K. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. J Neurooncol 2008; 86: 257-264
  • 21 Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, Li Y, Verma IM, Chiao PJ, Lu Z. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 2012; 48: 771-784
  • 22 Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 2012; 23: 362-369
  • 23 Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671-684
  • 24 Dwarakanath BS, Singh D, Banerji AK, Sarin R, Venkataramana NK, Jalali R, Vishwanath PN, Mohanti BK, Tripathi RP, Kalia VK, Jain V. Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J Cancer Res Ther 2009; 5 (Suppl. 01) S21-S26
  • 25 Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12: 829-846
  • 26 Jones NP, Schulze A. Targeting cancer metabolism–aiming at a tumourʼs sweet-spot. Drug Discov Today 2012; 17: 232-241