Transfusionsmedizin 2014; 4(3): 125-133
DOI: 10.1055/s-0034-1382830
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Humane endotheliale Progenitorzellen – Verheißungsvolle Kandidaten für therapeutische Angiogenese?

Human Endothelial Progenitor Cells – Promising Candidates for Therapeutic Angiogenesis?
E. Rohde
1   Universitätsklinik für Blutgruppenserologie und Transfusionsmedizin, Salzburg
2   Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. August 2014 (online)

Zusammenfassung

Die Forschung mit endothelialen Progenitorzellen (EPC) entwickelte sich innerhalb der letzten 15 Jahre besonders dynamisch, EPC wurden zum Hoffnungsträger für die Therapie von kardiovaskulären Erkrankungen. In der Angiogeneseforschung gingen Wissenschaftler von Fragen in der Grundlagenforschung zur Testung zellbasierter Therapien in präklinischen Tiermodellen über. Man isolierte und charakterisierte die biologischen Eigenheiten von putativen EPC aus Blut oder Knochenmark, um ihr therapeutisches Potenzial bereits nach wenigen Jahren in klinischen Studien zu testen. Die klinischen Resultate führten zur Erkenntnis, dass der Effekt von EPC in vivo weniger beeindruckend war als erwartet. Sogenannte EPC entpuppten sich bei strikter Betrachtung von Phänotyp und Funktion als unterschiedliche, zumeist terminal differenzierte hämatopoetische Zellen, die endotheliale Marker koexprimieren. Es hat sich aber erwiesen, dass hämatopoetische Zelltypen eindeutig proangiogene Effekte induzieren können, die man in Zukunft möglicherweise effizient nutzen könnte. Der Artikel bietet einen Überblick über derzeit gültige Definitionen und die Charakterisierung und Isolierung von EPC. Die Grundlagen von Stammzellbiologie und deren Bedeutung für Angiogenese und vaskuläre Homöostase werden diskutiert. Ein Ausblick auf Perspektiven für die therapeutische Angiogenese und auf mögliche Konzepte in der Entwicklung von Zelltherapie als zentrale Säule der regenerativen Medizin wird geboten.

Abstract

The field of endothelial progenitor cells (EPC) has developed with considerable speed into a clinically relevant matter within the last 15 years. EPC generated substantial promise as candidates for a potential reparative cell therapy for a number of human cardiovascular disorders and to improve functional organ recovery. Principles of therapeutic angiogenesis have been discovered in basic studies of isolating and characterizing the biologic properties of EPC and tested in preclinical rodent model systems of cardiovascular diseases. However, clinicians and basic scientists moved rapidly to the delivery of blood- or marrow-derived EPC into selected patients. Clinical EPC effects did not fulfill relatively high expectations. Furthermore, most “EPC” applied in preclinical and clinical studies turned out to be cells of the hematopoietic system which simply coexpressed markers primarily identified on endothelial cells (EC). Meanwhile, a more detailed appreciation has evolved with regard to the roles played by hematopoietic cells in vascular repair. This review will provide an overview on advances in the EPC field to date and focus on the clarification of the EPC definitions and of stem cell biology, angiogenesis and vascular homeostasis that has occurred over the last 5 to 10 years. Eventually, potential novel concepts for therapeutic angiogenesis and perspectives in cell therapy and regenerative medicine will be highlighted.

 
  • Literatur

  • 1 Strunk D. Endothelial progenitor cells: quod erat demonstrandum?. Curr Pharm Des 2011; 17: 3245-3251
  • 2 Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157-168
  • 3 Appelbaum FR. Hematopoietic-cell transplantation at 50. N Engl J Med 2007; 357: 1472-1475
  • 4 Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967
  • 5 Schmeisser A, Garlichs CD, Zhang H et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001; 49: 671-680
  • 6 Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2012; 2: a006692
  • 7 Lyden D, Hattori K, Dias S et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194-1201
  • 8 Mancuso P, Burlini A, Pruneri G et al. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001; 97: 3658-3661
  • 9 Bertolini F, Shaked Y, Mancuso P et al. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006; 6: 835-845
  • 10 Mancuso P, Colleoni M, Calleri A et al. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 2006; 108: 452-459
  • 11 Mancuso P, Antoniotti P, Quarna J et al. Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin Cancer Res 2009; 15: 267-273
  • 12 Gao D, Nolan DJ, Mellick AS et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008; 319: 195-198
  • 13 Nolan DJ, Ciarrocchi A, Mellick AS et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 2007; 21: 1546-1558
  • 14 Shaked Y, Ciarrocchi A, Franco M et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006; 313: 1785-1787
  • 15 Eizawa T, Ikeda U, Murakami Y et al. Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 2004; 90: 685-686
  • 16 Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999-1007
  • 17 Schmidt-Lucke C, Rossig L, Fichtlscherer S et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events – Proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111: 2981-2987
  • 18 Fadini GP, Avogaro A, Agostini C. Pathophysiology of circulating progenitor cells in pulmonary disease and parallels with cardiovascular disease. Am J Resp Cell Mol 2006; 35: 403-404
  • 19 Fadini GP, de Kreutzenberg SV, Coracina A et al. Circulating CD34(+) cells, metabolic syndrome, and cardiovascular risk. Eur Heart J 2006; 27: 2247-2255
  • 20 Kunz GA, Liang G, Cuculi F et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 2006; 152: 190-195
  • 21 Hughes AD, Coady E, Raynor S et al. Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis. Eur J Clin Invest 2007; 37: 35-41
  • 22 Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106: 2781-2786
  • 23 Loomans CJ, de Koning EJ, Staal FJ et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 2004; 53: 195-199
  • 24 Fadini GP, Pucci L, Vanacore R et al. Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia 2007; 50: 2156-2163
  • 25 Rohde E, Malischnik C, Thaler D et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells 2006; 24: 357-367
  • 26 Rohde E, Bartmann C, Schallmoser K et al. Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells 2007; 25: 1746-1752
  • 27 Kinnaird T, Stabile E, Burnett MS et al. Bone marrow-derived cells for enhancing collateral development – Mechanisms, animal data, and initial clinical experiences. Circ Res 2004; 95: 354
  • 28 Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9: 702-712
  • 29 Ziegler BL, Valtieri M, Porada GA et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 1999; 285: 1553-1558
  • 30 Peichev M, Naiyer AJ, Pereira D et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952-958
  • 31 Baumann CI, Bailey AS, Li W et al. PECAM-1 is expressed on hematopoietic stem cells throughout ontogeny and identifies a population of erythroid progenitors. Blood 2004; 104: 1010-1016
  • 32 Hofmann NA, Reinisch A, Strunk D. Isolation and large scale expansion of adult human endothelial colony forming progenitor cells. J Vis Exp 2009; 32: e1524 DOI: 10.3791/1524.
  • 33 Reinisch A, Hofmann NA, Obenauf AC et al. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 2009; 113: 6716-6725
  • 34 Case J, Mead LE, Bessler WK et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007; 35: 1109-1118
  • 35 Dimmeler S, Aicher A, Vasa M et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001; 108: 391-397
  • 36 Solovey A, Lin Y, Browne P et al. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 1997; 337: 1584-1590
  • 37 Ingram DA, Mead LE, Tanaka H et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104: 2752-2760
  • 38 Ingram DA, Mead LE, Moore DB et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2005; 105: 2783-2786
  • 39 Yoder MC, Mead LE, Prater D et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801-1809
  • 40 Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593-600
  • 41 Lin Y, Weisdorf DJ, Solovey A et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71-77
  • 42 Kovacic JC, Moore J, Herbert A et al. Endothelial progenitor cells, angioblasts, and angiogenesis–old terms reconsidered from a current perspective. Trends Cardiovasc Med 2008; 18: 45-51
  • 43 Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl) 2013; 91: 285-295
  • 44 Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438: 932-936
  • 45 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674
  • 46 Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11: 73-91
  • 47 Adamo L, Naveiras O, Wenzel PL et al. Biomechanical forces promote embryonic haematopoiesis. Nature 2009; 459: 1131-1135
  • 48 Sengupta M. Neovascularization of the disc in chronic simple glaucoma. Br J Ophthalmol 1954; 38: 685-689
  • 49 Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29: 15-18
  • 50 Simons M. Angiogenesis: where do we stand now?. Circulation 2005; 111: 1556-1566
  • 51 Iruela-Arispe ML, Beitel GJ. Tubulogenesis. Development 2013; 140: 2851-2855
  • 52 Schwartz SM, Stemerman MB, Benditt EP. The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol 1975; 81: 15-42
  • 53 Rafii S, Oz MC, Seldomridge JA et al. Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices. Ann Thorac Surg 1995; 60: 1627-1632
  • 54 Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002; 106: 3009-3017
  • 55 Chavakis E, Koyanagi M, Dimmeler S. Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 2010; 121: 325-335
  • 56 Mackie AR, Losordo DW. CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J 2011; 38: 474-485
  • 57 Hur J, Yang HM, Yoon CH et al. Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 2007; 116: 1671-1682
  • 58 Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008; 28: 1584-1595
  • 59 Yamamoto T. Angiogenic and inflammatory properties of psoriatic arthritis. ISRN Dermatol 2013; 2013: 630620
  • 60 Mancuso P, Bertolini F. Circulating endothelial cells as biomarkers in clinical oncology. Microvasc Res 2010; 79: 224-228
  • 61 Steinmetz M, Nickenig G, Werner N. Endothelial-regenerating cells: an expanding universe. Hypertension 2010; 55: 593-599
  • 62 Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 2012; 110: 624-637
  • 63 Estes ML, Mund JA, Mead LE et al. Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A 2010; 77: 831-839
  • 64 Pradhan KR, Mund JA, Johnson C et al. Polychromatic flow cytometry identifies novel subsets of circulating cells with angiogenic potential in pediatric solid tumors. Cytometry B Clin Cytom 2011; 80: 335-338
  • 65 Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008; 8: 802-815
  • 66 Rohde E, Schallmoser K, Reinisch A et al. Pro-angiogenic induction of myeloid cells for therapeutic angiogenesis can induce mitogen-activated protein kinase p 38-dependent foam cell formation. Cytotherapy 2011; 13: 503-512
  • 67 Valadi H, Ekstrom K, Bossios A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-659
  • 68 Gyorgy B, Szabo TG, Pasztoi M et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68: 2667-2688
  • 69 Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res 2012; 110: 356-369
  • 70 Rhee JS, Black M, Schubert U et al. The functional role of blood platelet components in angiogenesis. Thromb Haemost 2004; 92: 394-402
  • 71 Deregibus MC, Cantaluppi V, Calogero R et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110: 2440-2448
  • 72 Baer C, Squadrito ML, Iruela-Arispe ML et al. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Exp Cell Res 2013; DOI: 10.1016/j.yexcr.2013.03.026.
  • 73 de Jong OG, Verhaar MC, Chen Y et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1: 18396 DOI: 10.3402/jev.v1i0.18396.
  • 74 Sheldon H, Heikamp E, Turley H et al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 2010; 116: 2385-2394
  • 75 Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization. Faseb J 2011; 25: 2874-2882
  • 76 Mineo M, Garfield SH, Taverna S et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 2012; 15: 33-45
  • 77 Jansen F, Yang X, Hoyer FF et al. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arterioscler Thromb Vasc Biol 2012; 32: 1925-1935
  • 78 Finn NA, Searles CD. Intracellular and Extracellular miRNAs in Regulation of Angiogenesis Signaling. Curr Angiogenes 2012; 4: 299-307
  • 79 van Balkom BW, de Jong OG, Smits M et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 2013; 121: 3997-4006 S1–S15
  • 80 Kucharzewska P, Christianson HC, Welch JE et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A 2013; 110: 7312-7317
  • 81 Jansen F, Yang X, Hoelscher M et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128: 2026-2038
  • 82 Martinez MC, Andriantsitohaina R. Microparticles in angiogenesis: therapeutic potential. Circ Res 2011; 109: 110-119
  • 83 Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med 2013; 32: 763-767
  • 84 Jang SC, Kim OY, Yoon CM et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7: 7698-7710
  • 85 Rohde E. Endothelial colony-forming progenitor cells: identification, isolation, expansion and potential use for regenerative cell therapy. Transfusionsmedizin 2011; 1: 1-13