RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2015; 26(15): 2170-2174
DOI: 10.1055/s-0034-1381057
DOI: 10.1055/s-0034-1381057
letter
Y(OTf)3-Catalyzed Cascade Propargylic Substitution/Aza-Meyer–Schuster Rearrangement: Stereoselective Synthesis of α,β-Unsaturated Hydrazones and Their Conversion into Pyrazoles
Weitere Informationen
Publikationsverlauf
Received: 16. Mai 2015
Accepted after revision: 03. Juli 2015
Publikationsdatum:
12. August 2015 (online)
Abstract
A straightforward and concise method for the highly stereoselective synthesis of α,β-unsaturated hydrazones by the Y(OTf)3-catalyzed cascade propargylic substitution/aza-Meyer–Schuster rearrangement reaction of tertiary propargylic alcohols and p-toluenesulfonyl hydrazide under an air atmosphere is developed. A series of α,β-unsaturated hydrazones have been synthesized from simple and readily available starting materials in good yields. Furthermore, the obtained α,β-unsaturated hydrazones are converted into pyrazoles in the presence of LiOt-Bu.
Keywords
propargylic alcohols - aza-Meyer–Schuster rearrangement - Y(OTf)3 - α,β-unsaturated hydrazones - pyrazolesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1381057.
- Supporting Information
-
References and Notes
- 1a Ding C, Hou X. Chem. Rev. 2011; 111: 1914
- 1b Hao L, Zhan Z. Curr. Org. Chem. 2011; 15: 1625
- 1c Ljungdahl N, Kann N. Angew. Chem. Int. Ed. 2009; 48: 642
- 1d Detz RJ, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2009; 6263
- 2a Bauer EB. Synthesis 2012; 44: 1131
- 2b Guillena G, Ramon DJ, Yus M. Chem. Rev. 2010; 110: 1611
- 2c Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
- 2d Kabalka GW, Yao M. Curr. Org. Synth. 2008; 5: 28
- 2e Wang X, Li S, Pan Y, Wang H, Liang H, Chen Z, Qin X. Org. Lett. 2014; 16: 580
- 2f Fang Z, Liu J, Liu Q, Bi X. Angew. Chem. Int. Ed. 2014; 53: 7209
- 2g Zhu Y, Yin G, Hong D, Lu P, Wang Y. Org. Lett. 2011; 13: 1024
- 2h Yin G, Zhu Y, Zhang L, Lu P, Wang Y. Org. Lett. 2011; 13: 940
- 2i Yan W, Wang Q, Chen Y, Petersen JL, Shi X. Org. Lett. 2010; 12: 3308
- 2j Chatterjee PN, Roy S. J. Org. Chem. 2010; 75: 4413
- 2k Debleds O, Gayon E, Ostaszuk E, Vrancken E, Campagne JM. Chem. Eur. J. 2010; 16: 12207
- 2l Yoshimatsu M, Watanabe H, Koketsu E. Org. Lett. 2010; 12: 4192
- 2m Fang C, Pang Y, Forsyth CJ. Org. Lett. 2010; 12: 4528
- 2n Sanz R, Martínez A, Miguel D, Älvarez-Gutiérrez JM. Org. Lett. 2007; 9: 727
- 2o Zhan Z, Yang W, Yang R, Yu J, Li J, Liu H. Chem. Commun. 2006; 3352
- 3a Xu S, Hao L, Wang T, Ding Z, Zhan Z. Org. Biomol. Chem. 2013; 11: 294
- 3b Reddy CR, Vijaykumar J, Grée R. Synthesis 2013; 45: 830
- 4 Yoshimatsu M, Ohta K, Takahashi N. Chem. Eur. J. 2012; 18: 15602
- 5 Hao L, Wu F, Ding Z, Xu S, Ma Y, Chen L, Zhan Z. Chem. Eur. J. 2012; 18: 6453
- 6 Hao L, Hong J, Zhu J, Zhan Z. Chem. Eur. J. 2013; 19: 5715
- 7a Chen S, Wang J. J. Org. Chem. 2007; 72: 4993
- 7b Chen S, Yuan F, Zhao H, Li B. Res. Chem. Intermed. 2013; 39: 2391
- 8 For the crystal structure of 3a, please see the Supporting Information.
- 9 General Procedure for the Y(OTf)3-Catalyzed Reaction of Tertiary Propargylic Alcohols with p-Toluenesulfonyl Hydrazide To a solution of propargylic alcohols (0.3 mmol) and p-toluenesulfonyl hydrazide (0.6 mmol) in MeCN (2.0 mL) was added Y(OTf)3 (0.06 mmol) under an air atmosphere. The resulting mixture was heated at 80 °C for the indicated time. After completion of the reaction, the mixture was cooled to r.t. The solvent was removed in a vacuum, and the resulting residue was purified on a silica gel column (PE–EtOAc) to provide the desired α,β-unsaturated hydrazone products 3. Representative Spectroscopic Data Compound 3b: white solid; mp 128–130 °C. 1H NMR (500 MHz, CDCl3): δ = 1.86 (s, 3 H), 2.43 (s, 3 H), 6.19 (s, 1 H), 7.00–7.07 (m, 2 H), 7.33 (d, J = 8.0 Hz, 2 H), 7.39–7.44 (m, 3 H), 7.53–7.55 (m, 2 H), 7.63–7.68 (m, 2 H), 7.84 (s, 1 H), 7.89 (d, J = 8.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 18.2, 21.6, 115.5, 125.9, 128.0, 128.8, 128.8, 129.1, 129.7, 131.9, 135.6, 139.5, 144.2, 146.6, 150.9, 162.9, 164.8. ESI-HRMS: m/z calcd for C23H22FN2O2S [M + H]+: 409.1381; found: 409.1379. Compound 3q: white solid; mp 114–117 °C. 1H NMR (500 MHz, CDCl3): δ = 1.29 (s, 6 H), 2.43 (s, 3 H), 3.65 (s, 1 H), 6.07 (s, 1 H), 7.30 (d, J = 7.0 Hz, 5 H), 7.36–7.39 (m, 2 H), 7.83(d, J = 8.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 21.6, 27.0, 83.3, 91.6, 122.4, 128.3, 128.3, 128.4, 129.4, 131.7, 135.3, 143.8. Anal. Calcd for C18H20N2O2S: C, 65.83; H, 6.14; N, 8.53. Found: C, 65.81; H, 6.20; N, 8.41.
- 10a Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
- 10b Attanasi OA, Bianchi L, D’Auria M, Mantellini F, Racioppi R. Curr. Org. Synth. 2013; 10: 631
- 10c Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
- 10d Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
- 10e Lazny R, Nodzewska A. Chem. Rev. 2010; 110: 1386
- 10f Fulton JR, Aggarwal VK, de Vicente J. Eur. J. Org. Chem. 2005; 1479
- 11a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 11b Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
- 11c Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258
- 11d Wen J, Tang H, Xiong K, Ding Z, Zhan Z. Org. Lett. 2014; 16: 5940
- 11e Tang X, Huang L, Yang J, Xu Y, Wu W, Jiang H. Chem. Commun. 2014; 50: 14793
- 11f Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 11960
- 11g Schneider Y, Prévost J, Gobin M, Legault CY. Org. Lett. 2014; 16: 596
- 11h Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
- 11i Zhu Y, Lu W, Sun H, Zhan Z. Org. Lett. 2013; 15: 4146
- 12 General Procedure for the Synthesis of Pyrazoles from the Corresponding α,β-Unsaturated Hydrazones To a solution of α,β-unsaturated hydrazones (0.3 mmol) in toluene (2.0 mL) was added LiOt-Bu (0.45 mmol) under an air atmosphere. The resulting mixture was heated at 80 °C for the indicated time. After completion of the reaction, the solvent was removed in a vacuum. The resulting residue was purified on a silica gel column (EtOAc–PE) to provide the desired pyrazole products 4 and 5. Representative Spectroscopic DataCompound 4a: yellow solid; mp 68–71 °C. 1H NMR (500 MHz, CDCl3): δ = 1.83 (s, 3 H), 7.28–7.36 (m, 4 H), 7.39–7.44 (m, 3 H), 7.48 (t, J = 7.5 Hz, 2 H), 8.12–8.05 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 22.2, 100.3, 126.5, 127.3, 128.1, 128.8, 128.9, 129.3, 130.7, 136.34, 136.6, 154.9. ESI-HRMS: m/z calcd for C16H15N2 [M + H]+: 235.1230; found: 235.1230. Compound 4f: yellow solid; mp 84–87 °C. 1H NMR (500 MHz, CDCl3): δ = 1.80 (s, 3 H), 7.29 (d, J = 8.5 Hz, 2 H), 7.41–7.51 (m, 5 H), 8.07 (d, J = 8.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 22.2, 99.7, 122.1, 127.3, 128.2, 129.0, 129.5, 130.4, 131.9, 135.4, 135.8, 155.3. Anal. Calcd for C16H13BrN2: C, 61.36; H, 4.18; N, 8.94. Found: C, 61.29; H, 4.31; N, 8.95.
For selected reviews, see:
For selected reviews and examples, see:
For selected examples using second propargylic alcohols and hydrazines as the substrates, see:
For reviews, see:
For recent reviews and examples about the synthesis of pyrazoles, see: