Synlett 2015; 26(12): 1720-1724
DOI: 10.1055/s-0034-1380723
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Catalyzed [3+2] Coupling of Quinone Monoacetals or Quinone Imine Ketals with Vinylcarbamates

Li-Hua Liao
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Min-Min Zhang
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Yi-Jun Liao
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
Wei-Cheng Yuan
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
,
Xiao-Mei Zhang*
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: xmzhang@cioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 10 February 2015

Accepted after revision: 09 April 2015

Publication Date:
21 May 2015 (online)


Abstract

A mild and concise [3+2] coupling of quinone monoacetals or quinone imine ketals with vinylcarbamates promoted by Lewis acid was realized. Various 2-carbamate-2,3-dihydrobenzofurans and 2-carbamate-indolines have been prepared in moderate to good yields.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Ward RS. Chem. Soc. Rev. 1982; 11: 75
    • 1b Proksch P, Rodriquez E. Phytochemistry 1983; 22: 2335

      For some recent examples, see:
    • 2a Pettersson M, Johnson DS, Subramanyam C, Bales KR, Ende CW. A, Fish BA, Green ME, Kauffman GW, Lira R, Mullins PB, Navaratnam T, Sakya SM, Stiff CM, Tran TP, Vetelino BC, Xie LF, Zhang LM, Pustilnik LR, Wood KM, O’Donnell CJ. Bioorg. Med. Chem. Lett. 2012; 22: 2906
    • 2b Mayaka RK, Langat MK, Omolo JO, Cheplogoi PK. Planta Med. 2012; 78: 383
    • 2c Shen F, Hu AX, Luo XF, Ye J, Ou XM. Chin. J. Org. Chem. 2012; 32: 388
    • 2d Vijayakurup V, Carmela S, Carmelo D, Corrado T, Srinivas P, Gopala S. Life Sci. 2012; 91: 1336
    • 2e Chen W, Yang XD, Li Y, Yang LJ, Wang XQ, Zhang GL, Zhang HB. Org. Biomol. Chem. 2011; 9: 4250
    • 2f Jiao WH, Gao H, Zhao F, He F, Zhou GX, Yao XS. Chemistry & Biodiversity 2011; 8: 1163
    • 2g Yang F, Zhang HJ, Zhang YY, Chen WS, Yuan HL, Lin HW. Chem. Pharm. Bull. 2010; 58: 402
    • 2h Bose JS, Gangan V, Prakash R, Jain SK, Manna SK. J. Med. Chem. 2009; 52: 3184
    • 2i Frampton JE. Drugs 2009; 69: 2463
    • 2j Ha DT, Tran MN, Lee I, Lee YM, Kim JS, Jung H, Lee S, Na M, Bae K. J. Nat. Prod. 2009; 72: 1465
    • 2k Gupta D, Bleakley B, Gupta RK. J. Ethnopharmacol. 2008; 115: 361
    • 2l Saito M, Ueo M, Kametaka S, Saigo O, Uchida S, Hosaka H, Sakamoto K, Nakahara T, Mori A, Ishii K. Biol. Pharm. Bull. 2008; 31: 1959
    • 2m Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Sakayaroj J. Chem. Pharm. Bull. 2007; 55: 1404
    • 2n Yang XW, Zhao PJ, Ma YL, Xiao HT, Zuo YQ, He HP, Li L, Hao XJ. J. Nat. Prod. 2007; 70: 521
    • 2o Jang JH, Kanoh K, Adachi K, Shizuri Y. J. Antibiot. 2006; 59: 428
    • 2p Wakana D, Hosoe T, Itabashi T, Okada K, Takaki GM. D, Yaguchi T, Fukushima K, Kawai K. J. Nat. Med. 2006; 60: 279
    • 2q Shi GQ, Dropinski JF, Zhang Y, Santini C, Sahoo SP, Berger JP, MacNaul KL, Zhou GC, Agrawal A, Alvaro R, Cai TQ, Hernandez M, Wright SD, Moller DE, Heck JV, Meinke PT. J. Med. Chem. 2005; 48: 5589
    • 2r Pang JY, Xu ZL. Chin. J. Org. Chem. 2005; 25: 25
    • 2s Van Miert S, Van Dyck S, Schmidt TJ, Brun R, Vlietinck A, Lemiere G, Pieters L. Bioorg. Med. Chem. 2005; 13: 661
    • 2t Tanaka H, Hirata M, Etoh H, Sako M, Sato M, Murata J, Murata H, Darnaedi D, Fukai T. Chemistry & Biodiversity 2004; 1: 1101
    • 2u Li RW, Leach DN, Myers SP, Lin GL. D, Leach GJ, Waterman PG. Planta Med. 2004; 70: 421
    • 2v Pauwels PJ, Rauly I, Wurch T. J. Pharmacol. Exp. Ther. 2003; 305: 1015
    • 2w Inagaki M, Jyoyama H, Ono T, Yamada K, Kobayashi M, Baba T, Touchi A, Iwatani K, Ohkawa T, Matsumoto S, Tsuri T. Bioorg. Med. Chem. 2003; 11: 2415
    • 2x Chen CH, Shaw CY, Chen CC, Tsai YC. J. Nat. Prod. 2002; 65: 740
    • 2y Saeki M, Sakai M, Saito R, Kubota H, Ariumi H, Takano Y, Yamatodani A, Kamiya H. Jpn. J. Pharmacol. 2001; 86: 359
    • 2z Cho JY, Baik KU, Yoo ES, Yoshikawa K, Park MH. J. Nat. Prod. 2000; 63: 1205

      For reviews, see:
    • 3a Sheppard TD. J. Chem. Res. 2011; 377
    • 3b Pu WC, Wang F, Wang C. Chin. J. Org. Chem. 2011; 31: 155
    • 3c Bertolini F, Pineschi M. Org. Prep. Proced. Int. 2009; 41: 385

      For some recent examples, see:
    • 4a Cong H, Fu GC. J. Am. Chem. Soc. 2014; 136: 3788
    • 4b Blum TR, Zhu Y, Nordeen SA, Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 11056
    • 4c Belmessieri D, de la Houpliere A, Calder ED. D, Taylor JE, Smith AD. Chem. Eur. J. 2014; 20: 9762
    • 4d Ueda M, Ito Y, Ichii Y, Kakiuchi M, Shono H, Miyata O. Chem. Eur. J. 2014; 20: 6763
    • 4e Wu B, Chen MW, Ye ZS, Yu CB, Zhou YG. Adv. Synth. Catal. 2014; 356: 383
    • 4f Shaikh AK, Varvounis G. Org. Lett. 2014; 16: 1478
    • 4g Fujita T, Sanada S, Chiba Y, Sugiyama K, Ichikawa J. Org. Lett. 2014; 16: 1398
    • 4h Jiang SS, Hu B, Yu XX, Deng WP. Chin. J. Chem. 2014; 32: 694
    • 4i Hata K, He ZH, Daniliuc CG, Itami K, Studer A. Chem. Commun. 2014; 50: 463
    • 4j Luo LG, Liu CZ, Hou ZQ, Wang YY, Dai LY. RSC Adv. 2014; 4: 29527
    • 4k Ito M, Namie R, Krishnamurthi J, Miyamae H, Takeda K, Nambu H, Hashimoto S. Synlett 2014; 25: 288
    • 4l Ortega N, Urban S, Beiring B, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 1710
    • 4m Tsui GC, Tsoung J, Dougan P, Lautens M. Org. Lett. 2012; 14: 5542
    • 4n Zhao GQ, Wang BJ, Yang WJ, Ren HJ. Eur. J. Org. Chem. 2012; 6236
    • 4o Ortega N, Beiring B, Urban S, Glorius F. Tetrahedron 2012; 68: 5185
    • 4p Wang DH, Yu JQ. J. Am. Chem. Soc. 2011; 133: 5767
    • 4q Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
    • 4r Senboku H, Michinishi J, Hara S. Synlett 2011; 1567
    • 4s Samant BS, Bhagwat SS. Chin. J. Catal. 2011; 32: 231
    • 4t Gharpure SJ, Prasath V. J. Chem. Sci. 2011; 123: 943
    • 4u Baragona F, Lomberget T, Duchamp C, Henriques N, Lo Piccolo E, Diana P, Montalbano A, Barret R. Tetrahedron 2011; 67: 8731
    • 4v Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328: 1376
    • 4w Xie PZ, Huang Y, Chen RY. Org. Lett. 2010; 12: 3768

      For coupling of quinone derivatives with alkene nucleophiles, see:
    • 5a Hu Y, Kamitanaka T, Mishima Y, Dohi T, Kita Y. J. Org. Chem. 2013; 78: 5530
    • 5b Dohi T, Hu YJ, Kamitanaka T, Washimi N, Kita Y. Org. Lett. 2011; 13: 4814
    • 5c Dohi T, Hu YJ, Kamitanaka T, Kita Y. Tetrahedron 2012; 68: 8424
    • 5d Lomberget T, Baragona F, Fenet B, Barret R. Org. Lett. 2006; 8: 3919
    • 5e Zhou G, Corey EJ. J. Am. Chem. Soc. 2005; 127: 11958
    • 5f Nair V, Rajesh C, Dhanya R, Rath NP. Org. Lett. 2002; 4: 953
    • 5g Apers S, Paper D, Bürgermeister J, Baronikova S, Van Dyck S, Lemiere G, Vlietinck A, Pieters L. J. Nat. Prod. 2002; 65: 718
    • 5h Ohara H, Kiyokane H, Itoh T. Tetrahedron Lett. 2002; 43: 3041
    • 5i Itoh T, Kawai K, Hayase S, Ohara H. Tetrahedron Lett. 2003; 44: 4081
    • 5j Benbow JW, Katoch-Rouse R. J. Org. Chem. 2001; 66: 4965
    • 5k Engler TA, Letavic MA, Iyengar R, LaTessa KO, Reddy JP. J. Org. Chem. 1999; 64: 2391
    • 5l Bolzacchini E, Brunow G, Meinardi S, Orlandi M, Rindone B, Rummakko P, Setala H. Tetrahedron Lett. 1998; 39: 3291
    • 5m Engler TA, Chai W, LaTessa KO. J. Org. Chem. 1996; 61: 9297
    • 5n Engler TA, Gfesser GA, Draney BW. J. Org. Chem. 1995; 60: 3700
    • 5o Lemière G, Gao M, De Groot A, Dommisse R, Lepoivre J, Pieters L, Buss V. J. Chem. Soc., Perkin Trans. 1 1995; 1775
    • 5p Kerns ML, Conroy SM, Swenton JS. Tetrahedron Lett. 1994; 35: 7529
    • 5q Wang SP, Gates BD, Swenton JS. J. Org. Chem. 1991; 56: 1979
    • 5r Engler TA, Combrink KD, Ray JE. J. Am. Chem. Soc. 1988; 110: 7931

      For reviews, see:
    • 6a Magdziak D, Meek SJ, Pettus TR. R. Chem. Rev. 2004; 104: 1383
    • 6b Liao CC, Peddinti RK. Acc. Chem. Res. 2002; 35: 856

    • For some recent examples, see:
    • 6c Nishiyama Y, Han-Ya Y, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2014; 136: 6598
    • 6d Zhang YC, Zhao JJ, Jiang F, Sun SB, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 6e Zhang YC, Jiang F, Wang SL, Shi F, Tu SJ. J. Org. Chem. 2014; 79: 6143
    • 6f Yin ZW, Zhang JZ, Wu J, Green R, Li SH, Zheng SP. Org. Biomol. Chem. 2014; 12: 2854
    • 6g Liao LH, Shu C, Zhang MM, Liao YJ, Hu XY, Zhang YH, Wu ZJ, Yuan WC, Zhang XM. Angew. Chem. Int. Ed. 2014; 53: 10471
    • 6h Shu C, Liao LH, Liao YJ, Hu XY, Zhang YH, Yuan WC, Zhang XM. Eur. J. Org. Chem. 2014; 4467
    • 6i Zhang YH, Hu XY, Li SS, Liao YJ, Yuan WC, Zhang XM. Tetrahedron 2014; 70: 2020
    • 6j Hashimoto T, Nakatsu H, Takiguchi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 16010
    • 6k Ito M, Kubo H, Itani I, Morimoto K, Dohi T, Kita Y. J. Am. Chem. Soc. 2013; 135: 14078
    • 6l Zhang JZ, Yin ZW, Leonard P, Wu J, Sioson K, Liu C, Lapo R, Zheng SP. Angew. Chem. Int. Ed. 2013; 52: 1753
    • 6m Albrecht Ł, Gómez CV, Jacobsen CB, Jørgensen KA. Org. Lett. 2013; 15: 3010
    • 6n Han ZY, Chen DF, Wang YY, Guo R, Wang PS, Wang C, Gong LZ. J. Am. Chem. Soc. 2012; 134: 6532
    • 6o He ZL, Liu TL, Tao HY, Wang CJ. Org. Lett. 2012; 14: 6230
    • 6p Wang J, Wang S, Wang G, Zhang J, Yu XQ. Chem. Commun. 2012; 48: 11769
    • 6q Siau WY, Li WJ, Xue F, Ren Q, Wu MH, Sun SF, Guo HB, Jiang XF, Wang J. Chem. Eur. J. 2012; 18: 9491
    • 6r Yu JS, Zhou F, Liu YL. Zhou J. Beilstein J. Org. Chem. 2012; 8: 1360
    • 6s Liu YJ, Liu JX, Wang M, Liu J, Liu Q. Adv. Synth. Catal. 2012; 354: 2678
    • 6t Dohi T, Washimi N, Kamitanaka T, Fukushima K, Kita Y. Angew. Chem. Int. Ed. 2011; 50: 6142
    • 6u Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Bel MD, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
    • 6v Chuang KV, Navarro R, Reisman SE. Chem. Sci. 2011; 2: 1086
    • 6w Tian W, Chennamaneni LR, Suzuki T, Chen DY.-K. Eur. J. Org. Chem. 2011; 1027
    • 6x Jensen KL, Franke PT, Nielsen LT. K, Daasbjerg K, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
    • 6y Wang C, Chen XH, Zhou SM, Gong LZ. Chem. Commun. 2010; 46: 1275

      For some recent examples of on formal [3+2] cycloadditions or [3+2] annulations, see:
    • 7a Shi F, Zhang HH, Sun XX, Liang J, Fan T, Tu SJ. Chem. Eur. J. 2015; 21: 3465
    • 7b Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2014; 53: 9462
    • 7c Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew. Chem. Int. Ed. 2014; 53: 5653
    • 7d Tan W, Li X, GongY X, Ge MD, Shi F. Chem. Commun. 2014; 50: 15901
    • 7e Zhu FL, Wang YH, Zhang DY, Xu J, Hu XP. Angew. Chem. Int. Ed. 2014; 53: 10223
  • 8 General Experimental Procedure for the [3+2] Coupling of Quinone Monoacetals or Quinone Imine Ketals 1 with Vinylcarbamates 2 Quinone monoacetal or quinone imine ketal 1 (0.30 mmol) and vinylcarbamate 2 (0.20 mmol) were added to a flame-dried vial equipped with a magnetic stirring bar. Then MeCN (2 mL) was added to dissolve the mixture. Afterwards Cu(OTf)2 (10.8 mg, 0.02 mmol) was introduced in the solution. The reaction mixture was stirred at 25 °C for 12 h. Then the solvent was evaporated, and the residue was subjected to chromatography (silica gel; hexane–EtOAc, 20:1 to 10:1) to afford the desired product 3.
  • 9 Benzyl (5-Methoxy-2,3-dihydrobenzofuran-2-yl)carbamate (3a) Yield 84%, 0.050 g; white solid. 1H NMR (300 MHz, CDCl3): δ = 7.26–7.35 (m, 5 H), 6.65–6.74 (m, 3 H), 6.26 (br s, 1 H), 5.75 (d, J = 8.8 Hz, 1 H), 5.08–5.18 (m, 2 H), 3.74 (s, 3 H), 3.49 (dd, J 1 = 8.3 Hz, J 2 = 16.4 Hz, 1 H), 2.89 (dd, J 1 = 16.5 Hz, J 2 = 4.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 155.3, 154.3, 151.8, 135.8, 128.5, 128.3, 128.2, 125.2, 113.3, 110.9, 109.8, 85.3, 67.2, 55.9, 36.1. ESI-HRMS: m/z calcd for C17H17NO4Na+ [M + Na]+: 322.1047; found: 322.1055.