Synthesis 2015; 47(13): 1951-1959
DOI: 10.1055/s-0034-1380536
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Access to N-Alkylsulfoximines from Sulfides by a Sequential Imidation/Oxidation Procedure

Carl Albrecht Dannenberg
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: carsten.bolm@oc.rwth-aachen.de
,
Vincent Bizet*
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: carsten.bolm@oc.rwth-aachen.de
,
Carsten Bolm*
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: carsten.bolm@oc.rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 09 March 2015

Accepted: 14 March 2015

Publication Date:
16 April 2015 (online)


Abstract

Synthetically relevant N-alkyl-substituted sulfoximines are directly prepared from sulfides by an unprecedented one-pot imidation/oxidation sequence. In situ generated N-bromoalkylamines serve as readily accessible imidating agents leading to N-alkylsulfiliminium bromides that are subsequently oxidized providing the corresponding N-alkylsulfoximines. In this manner, gram quantities of the products can be obtained in a short period of time avoiding the use of toxic and cumbersome to handle alkylating reagents.

Supporting Information

 
  • References


    • For reviews about sulfoximines, see:
    • 1a Reggelin M, Zur C. Synthesis 2000; 1
    • 1b Harmata M. Chemtracts 2003; 16: 660
    • 1c Okamura H, Bolm C. Chem. Lett. 2004; 33: 482
    • 1d Bolm C In Asymmetric Synthesis with Chemical and Biological Methods . Enders D, Jaeger K.-E. Wiley-VCH; Weinheim: 2007: 149
    • 1e Gais H.-J. Heteroat. Chem. 2007; 18: 472
    • 1f Bolm C. Latv. J. Chem. 2012; 49
    • 1g Bizet V, Kowalczyk R, Bolm C. Chem. Soc. Rev. 2014; 43: 2426
    • 1h Shen X, Hu J. Eur. J. Org. Chem. 2014; 4437

      For recent articles dealing with sulfoximine syntheses, see:
    • 2a Wang J, Frings M, Bolm C. Angew. Chem. Int. Ed. 2013; 52: 8661 ; Angew. Chem. 2013, 125, 8823
    • 2b Wang J, Frings M, Bolm C. Chem. Eur. J. 2014; 20: 966
    • 2c Bizet V, Buglioni L, Bolm C. Angew. Chem. Int. Ed. 2014; 53: 5639 ; Angew. Chem. 2014, 126, 5745
    • 2d Buglioni L, Bizet V, Bolm C.  Adv. Synth. Catal. 2014; 356: 2209
    • 2e Miao J, Richards NG. J, Ge H. Chem. Commun. 2014; 50: 9687 ; and references cited therein
  • 3 For a recent overview about the use of sulfoximines in medicinal chemistry, see: Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399 ; Angew. Chem. 2013, 125, 9570
    • 4a Lücking U, Jautelat R, Krueger M, Brumby T, Lienau P, Schaefer M, Briem H, Schulze J, Hillisch A, Reichel A, Wengner AM, Siemeister G. ChemMedChem 2013; 8: 1067
    • 4b Siemeister G, Lücking U, Wengner AM, Lienau P, Steinke W, Schatz C, Mumberg D, Ziegelbauer K. Mol. Cancer Ther. 2012; 11: 2265
    • 4c Krüger J, Gries J, Lovis K, Hassfeld J. Bayer Pharma AG, Patent WO 2012/038411 A1, 2012
    • 4d Foote KM, Nissink JW. M, Turner P AstraZeneca Patent WO 2011/154737 A1, 2011

      For bioactivities of N-methylated sulfoximines, see:
    • 5a Walker DP, Zawistoski MP, McGlynn MA, Li J.-C, Kung DW, Bonnette PC, Baumann A, Buckbinder L, Houser JA, Boer J, Mistry A, Han S, Xing L, Guzman-Perez A. Bioorg. Med. Chem. Lett. 2009; 19: 3253
    • 5b Park SJ, Baars H, Mersmann S, Buschmann H, Baron JM, Amann PM, Czaja K, Hollert H, Bluhm K, Redelstein R, Bolm C. ChemMedChem 2013; 8: 217
    • 5c Park SJ, Buschmann H, Bolm C. Bioorg. Med. Chem. Lett. 2011; 21: 4888
    • 6a Zhu Y, Loso MR, Watson GB, Sparks TC, Rogers RB, Huang JX, Gerwick BC, Babcock JM, Kelley D, Hegde VB, Nugent BM, Renga JM, Denholm I, Gorman K, DeBoer GJ, Hasler J, Meade T, Thomas JD. J. Agric. Food Chem. 2011; 59: 2950
    • 6b Babcock JM, Gerwick CB, Huang JX, Loso MR, Nakamura G, Nolting SP, Rogers RB, Sparks TC, Thomas J, Watson GB, Zhu Y. Pest. Manag. Sci. 2011; 67: 328
    • 6c Watson GB, Loso MR, Babcock JM, Hasler JM, Letherer TJ, Young CD, Zhu Y, Casida JE, Sparks TC. Insect. Biochem. Mol. Biol. 2011; 41: 432
    • 6d Sparks TC, Loso MR, Watson GB, Babcock JM, Kramer VJ, Zhu Y, Nugent BM, Thomas JD In Modern Crop Protection Compounds . 2nd ed., Vol. 3; Kraemer W, Schirmer U, Jeschke P, Witschel M. Wiley-VCH; Weinheim: 2012: 1226
  • 7 Liberation, Absorption, Distribution, Metabolism, Excretion.
  • 8 Goldberg FW, Kettle JG, Xiong J, Lin D. Tetrahedron 2014; 70: 6613
  • 9 Bolm C, Hackenberger CP. R, Simić O, Verrucci M, Müller D, Bienewald F. Synthesis 2002; 879
    • 10a Johnson CR, Lavergne OM. J. Org. Chem. 1993; 58: 1922
    • 10b Raguse B, Ridley DD. Aust. J. Chem. 1986; 39: 1655
    • 10c Williams TR, Cram DJ. J. Org. Chem. 1973; 38: 20
  • 11 Hendriks CM. M, Bohmann RA, Bohlem M, Bolm C.  Adv. Synth. Catal. 2014;  356: 1847
    • 12a Williams TR, Booms RE, Cram DJ. J. Am. Chem. Soc. 1971; 93: 7338
    • 12b Schmidbaur H, Kammel G. Chem. Ber. 1971; 104: 3234
    • 12c Johnson CR, Schroeck CW, Shanklin JR. J. Am. Chem. Soc. 1973; 95: 7424
    • 12d Johnson CR, Corkins HG. J. Org. Chem. 1978; 43: 4136
    • 13a Johnson CR, Rigau JJ, Haake M, McCants Jr D, Keiser JE, Gertsema A. Tetrahedron Lett. 1968; 9: 3719
    • 13b Johnson CR, Haake M, Schroeck CW. J. Am. Chem. Soc. 1970; 92: 6594
  • 14 Greenwald RB, Evans DH. Synthesis 1977; 650
  • 15 Brussaard Y, Olbrich F, Schaumann E. Inorg. Chem. 2013; 52: 13160

    • For other applications of 9, see:
    • 16a Tamura Y, Ikeda H, Morita I, Tsubouchi H, Ikeda M. Chem. Pharm. Bull. 1982; 30: 1221
    • 16b Franek W, Claus PK. Monatsh. Chem. 1990; 121: 539

      Compound 9 is the N-methyl analogue of O-(mesitylenesulfonyl)hydroxylamine (MSH), which is a well-utilized compound in sulfur imidations. However, large-scale applications have raised safety concern. For relevant references, see:
    • 17a Tamura Y, Minamikawa J, Sumoto K, Fujii S, Ikeda M. J. Org. Chem. 1973; 38: 1239
    • 17b Mendiola J, Rincón JA, Mateos C, Soriano JF, de Frutos Ó, Niemeier JK, Davis EM. Org. Process Res. Dev. 2009; 13: 263
  • 18 Bortolini O, Yang SS, Cooks RG. Org. Mass Spectrom. 1993; 28: 1313
    • 19a Alternatively, the formation of the N-alkylsulfiliminium bromides 14 could be explained by reactions of the alkylamines with S-bromosulfonium salts being formed by initial bromine-to-sulfide additions. Here, however, this reaction path appears unlikely as all attempts to promote such process were unsuccessful leading to only complex product mixtures as revealed by NMR spectroscopy.
    • 19b For an early work, see: Tsujihara K, Furukawa N, Oae K, Oae S. Bull. Chem. Soc. Jpn. 1969; 42: 2631
  • 20 Initially, an equimolar mixture of MeNH2, Br2, und t-BuOK (1.4 equiv each) was applied for the imidation of sulfide 8a. Under these conditions, the conversion of 8a was only moderate (59%), and besides sulfiliminium salt 14a small amounts (2%) of sulfoxide 15a were detected.
  • 21 For the thermal stability of sulfiliminium salts, see: Tamura Y, Matsushima H, Minamikawa J, Ikeda M, Sumoto K. Tetrahedron 1975; 31: 3035
  • 22 Oae S, Masuda T, Tsujihara K, Furukawa N. Bull. Chem. Soc. Jpn. 1972; 45: 3586