Synlett 2015; 26(15): 2051-2059
DOI: 10.1055/s-0034-1380444
synpacts
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Azavinylcarbene: A Versatile Synthon-Enabling Divergent Synthesis of Nitrogen Heterocycles

Yuanhao Wang
a   The Comprehensive AIDS Research Center and Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084   P. R. of China   Email: yefengtang@tsinghua.edu.cn
,
Xiaoqiang Lei
a   The Comprehensive AIDS Research Center and Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084   P. R. of China   Email: yefengtang@tsinghua.edu.cn
,
Yefeng Tang*
a   The Comprehensive AIDS Research Center and Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084   P. R. of China   Email: yefengtang@tsinghua.edu.cn
b   Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 29 April 2015

Accepted after revision: 21 May 2015

Publication Date:
07 July 2015 (online)


Abstract

Over the past several years, rhodium-azavinylcarbene (Rh-AVC) has grown into an enabling synthon for the synthesis of diverse nitrogen heterocycles. Herein we present an overview of our recent achievements in this field, including the Rh-AVC-promoted formal [4+3], [3+3], and [3+2] cycloadditions. These reactions allow for the efficient synthesis of several classes of important nitrogen heterocycles, such as azepines, pyrroles, and pyrazines. Some relevant works from other groups are also briefly discussed.

1 Introduction

2 Formal [4+3] and [3+2] Cycloadditions of 1,2,3-Triazoles with 1,3-Dienes

3 Formal [3+2] Cycloadditions of 1,2,3-Triazoles with Silyl or Alkyl Enol Ethers

4 Formal [3+3] and [3+2] Cycloadditions of 1,2,3-Triazoles with 2H-Azirines

5 Conclusion and Perspective

 
  • References


    • For selected reviews, see:
    • 1a Fan WQ, Katritzky AR In Comprehensive Heterocyclic Chemistry II . Vol. 4. Katritzky AR. Pergamon Press; Oxford: 1996: 1
    • 1b Muller T, Bräse S. Angew. Chem. Int. Ed. 2011; 50: 11844
    • 1c Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905

      For selected examples, see:
    • 2a Feldman AK, Colasson B, Fokin VV. Org. Lett. 2004; 6: 3897
    • 2b Chattopadhyay B, Vera CI. R, Chuprakov S, Gevorgyan V. Org. Lett. 2010; 12: 2166
    • 2c Li W, Jia Q, Du A, Wang J. Chem. Commun. 2013; 49: 10187
    • 2d Chen ZK, Yan QQ, Liu ZX, Xu YM, Zhang YH. Angew. Chem. Int. Ed. 2013; 52: 13324
  • 3 Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757

    • For leading reviews, see:
    • 4a Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
    • 4b Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
    • 4c Davie HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151

      For selected examples, see:
    • 5a Shi Y, Gevorgyan V. Org. Lett. 2013; 15: 5394
    • 5b Alford JS, Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 11712
    • 5c Zibinsky M, Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
    • 5d Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 6802
    • 5e Miura T, Tanaka T, Hiraga K, Stewart SG, Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
    • 5f Miura T, Funakoshi Y, Murakami M. J. Am. Chem. Soc. 2014; 136: 2272
    • 6a Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am. Chem. Soc. 2009; 131: 18034
    • 6b Grimster N, Zhang L, Fokin VV. J. Am. Chem. Soc. 2010; 132: 2510
    • 6c Zibinsky M, Fokin VV. Org. Lett. 2011; 13: 4870
    • 6d Alford JS, Davies HM. L. Org. Lett. 2012; 14: 6020
    • 7a Chuprakov S, Malik JA, Zibinsky M, Fokin VV. J. Am. Chem. Soc. 2011; 133: 10352
    • 7b Miura T, Biyajima T, Fujii T, Murakami MJ. J. Am. Chem. Soc. 2012; 134: 194
    • 7c Miura T, Tanaka T, Biyajima T, Yada A, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 3883
    • 7d Chuprakov S, Worrell BT, Selander N, Sit RK, Fokin VV. J. Am. Chem. Soc. 2014; 136: 195
    • 8a Fu JK, Shen HJ, Chang YY, Li CC, Gong JX, Yang Z. Chem. Eur. J. 2014; 20: 12881
    • 8b Boyer A. Org. Lett. 2014; 16: 1660

      For selected examples, see:
    • 9a Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 9b Miura T, Yamauchi M, Murakami M. Chem. Commun. 2009; 45: 1470
    • 9c Chattopadhyay B, Gevorgyan V. Org. Lett. 2011; 13: 3746
    • 9d Schultz EE, Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
    • 9e Miura T, Hiraga K, Biyajima T, Nakamuro T, Murakami M. Org. Lett. 2013; 15: 3298
    • 9f Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
    • 9g Parr BT, Green SA, Davies HM. J. J. Am. Chem. Soc. 2013; 135: 4716
    • 10a Ma XJ, Pan SF, Wang HX, Chen WZ. Org. Lett. 2014; 16: 4554
    • 10b Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376
    • 11a Shang H, Wang YH, Tian YF, Feng J, Tang Y. Angew. Chem. Int. Ed. 2014; 53: 5662
    • 11b Kim S, Mo J, Kim J, Ryu T, Lee PH. Asian J. Org. Chem. 2014; 3: 926
    • 11c Schultz EE, Lindsay VN. G, Sarpong R. Angew. Chem. Int. Ed. 2014; 53: 9904
    • 11d Tian Y, Wang YH, Shang H, Xu XD, Tang YF. Org. Biomol. Chem. 2015; 13: 612
    • 12a Wang YH, Lei XQ, Tang YF. Chem. Commun. 2015; 51: 4507
    • 12b Zhao YZ, Yang HB, Tang XY, Shi M. Chem. Eur. J. 2015; 21: 3562
  • 13 Feng J, Wang YH, Li QG, Jiang RW, Tang YF. Tetrahedron Lett. 2014; 55: 6455

    • For selected examples of the synthesis of azepines, see:
    • 14a Maier ME. Angew. Chem. Int. Ed. 2000; 39: 2073
    • 14b Jakubec P, Hawkins A, Felzmann W, Dixon DJ. J. Am. Chem. Soc. 2012; 134: 17482
    • 14c Nakamura I, Okamoto M, Sato Y, Terada M. Angew. Chem. Int. Ed. 2012; 51: 10816
    • 14d Shi Z, Grohmann C, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5393
    • 14e Yang J, Zhu C, Tang X, Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
    • 14f Shapiro ND, Toste FD. J. Am. Chem. Soc. 2008; 130: 9244
    • 14g Wang L, Huang J, Peng S, Liu H, Jiang X, Wang J. Angew. Chem. Int. Ed. 2013; 52: 1768

      For examples of aza-Cope rearrangement leading to azepines and related derivative, see:
    • 15a Paquette LA, Ewing GD. J. Am. Chem. Soc. 1978; 136: 2908
    • 15b Boeckman RK, Shair MD. Jr, Vargas JR, Stolz LA. J. Org. Chem. 1993; 58: 1295
    • 15c Böttcher G, Reissig HU. Synlett 2000; 725
    • 15d Reissig HU, Böttcher G, Zimmer R. Can. J. Chem. 2004; 82: 166

      For reviews on cyclopropylimine rearrangement, see:
    • 16a Wong HN. C, Hon M.-Y, Tse C.-W, Yip Y.-C, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
    • 16b Stevens RC. Acc. Chem. Res. 1984; 17: 289

    • For selected examples, see:
    • 16c Lathbury DC, Parsons PJ, Pinto I. J. Chem. Soc., Chem. Commun. 1988; 2: 81
    • 16d Kagabu S, Kawai I. J. Chem. Soc., Chem. Commun. 1990; 4: 1393
    • 16e Tomilov YV, Platonov DN, Frumkin AE, Lipilin DL, Salikov RF. Tetrahedron Lett. 2010; 51: 5120
    • 16f Saha S, Reddy ChV. R, Patro B. Tetrahedron Lett. 2011; 52: 4014
    • 16g Kwok SW, Zhang L, Grimster NP, Fokin VV. Angew. Chem. Int. Ed. 2014; 53: 3452
  • 17 Kim C, Park S, Eom D, Seo B, Lee PH. Org. Lett. 2014; 16: 1900
  • 18 Rajasekar S, Anbarasan P. J. Org. Chem. 2014; 79: 8428
  • 19 Ran R.-Q, He J, Xiu S.-D, Wang K.-B, Li C-Y. Org. Lett. 2014; 16: 3704