Synthesis 2015; 47(10): 1413-1422
DOI: 10.1055/s-0034-1380405
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Route to Novel Uracil-Based Drug-Like Molecules

Denis A. Babkov
a   Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd 400131, Russian Federation
,
Alexander O. Chizhov
b   Zelinsky Institute of Organic Chemistry RAS, Leninsky pr. 47, Moscow 119991, Russian Federation
,
Anastasia L. Khandazhinskaya
c   Engelhardt Institute of Molecular Biology, Russian Academy of Science, Vavilov Str., 32, Moscow 119991, Russian Federation
,
Angela Corona
d   Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, Monserrato (Cagliari) I-09042, Italy
,
Francesca Esposito
d   Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, Monserrato (Cagliari) I-09042, Italy
,
Enzo Tramontano
d   Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, Monserrato (Cagliari) I-09042, Italy
,
Katherine L. Seley-Radtke*
e   Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA   Email: kseley@umbc.edu
,
Mikhail S. Novikov
a   Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Pavshikh Bortsov Sq., 1, Volgograd 400131, Russian Federation
› Author Affiliations
Further Information

Publication History

Received: 28 December 2014

Accepted after revision: 26 January 2015

Publication Date:
04 March 2015 (online)


Abstract

In order to identify new antiretroviral agents, a series of novel uracil derivatives have been synthesized. Optimized conditions for coupling of Weinreb amides with aromatic Grignard reagents allow the convenient preparation of key benzophenone intermediates in high yields and purities. The use of a modified silyl Hilbert–Johnson reaction affords the target compounds under mild conditions.

Supporting Information

 
  • References

  • 1 Novikov MS, Ivanova ON, Ivanov AV, Ozerov AA, Valuev-Elliston VT, Temburnikar K, Gurskaya GV, Kochetkov SN, Pannecouque C, Balzarini J, Seley-Radtke KL. Bioorg. Med. Chem. 2011; 19: 5794
  • 2 Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X. Med. Res. Rev. 2013; 33: E1
  • 3 Sweeney ZK, Harris SF, Arora SF, Javanbakht H, Li Y, Fretland J, Davidson JP, Billedeau JR, Gleason SK, Hirschfeld D, Kennedy-Smith JJ, Mirzadegan T, Roetz R, Smith M, Sperry S, Suh JM, Wu J, Tsing S, Villaseñor AG, Paul A, Su G, Heilek G, Hang JQ, Zhou AS, Jernelius JA, Zhang F.-J, Klumpp K. J. Med. Chem. 2008; 51: 7449
  • 4 Ren J, Chamberlain PP, Stamp A, Short SA, Weaver KL, Romines KR, Hazen R, Freeman A, Ferris RG, Andrews CW, Boone L, Chan JH, Stammers DK. J. Med. Chem. 2008; 51: 5000
  • 5 Frey KM, Bollini M, Mislak AC, Cisneros JA, Gallardo-Macias R, Jorgensen WL, Anderson KS. J. Am. Chem. Soc. 2012; 134: 19501
  • 6 Chong P, Sebahar P, Youngman M, Garrido D, Zhang H, Stewart EL, Nolte RT, Wang L, Ferris RG, Edelstein M, Weaver K, Mathis A, Peat A. J. Med. Chem. 2012; 55: 10601
  • 7 Zhan P, Liu X, Li Z. Curr. Med. Chem. 2009; 16: 2876
  • 8 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
  • 9 Dieter RK. Tetrahedron 1999; 55: 4177
  • 10 Yoshioka T, Kitagawa M, Oki M, Kubo S, Tagawa H, Ueno K, Tsukada W, Tsubokawa M, Kasahara A. J. Med. Chem. 1978; 21: 633
  • 11 Walsh DA, Shamblee DA, Welstead WJ, Sancilio LF. J. Med. Chem. 1982; 25: 446
  • 12 Lee CM, Plattner JJ, Ours CW, Horrom BW, Smital JR, Martin YC, Pernet AG, Bunnell PR, El Masry SE, Dodge PW. J. Med. Chem. 1984; 27: 1579
  • 13 Scharf H.-D, Weitz R. Tetrahedron 1979; 35: 2263
  • 14 Hercouet A, Le Corre M. Tetrahedron 1981; 37: 2867
  • 15 Novikov MS, Ozerov AA. Chem. Heterocycl. Compd. 2005; 41: 905
  • 16 Novikov MS, Buckheit RW, Temburnikar K, Khandazhinskaya AL, Ivanov AV, Seley-Radtke KL. Bioorg. Med. Chem. 2010; 18: 8310
  • 17 Boncel S, Gondela A, Walczak K. Curr. Org. Synth. 2008; 5: 365
  • 18 Lukevics E, Zablotskaya AE, Solomennikova II. Russ. Chem. Rev. 1974; 43: 140
  • 19 Pichat L, Chatelain G. Bull. Soc. Chim. Fr. 1970; 5: 1833
  • 20 Ishikawa I, Itoh T, Melik-Ohanjanian RG, Takayanagi H, Nizuno Y, Ogura H, Kawahara N. Heterocycles 1990; 31: 1641
  • 21 Fraile JM, Lafuente G, Mayoral JA, Pallarés A. Tetrahedron 2011; 67: 8639
  • 22 Coelho A, Sotelo E, Novoa H, Peeters OM, Blaton N, Raviña E. Tetrahedron Lett. 2004; 45: 3459
  • 23 Miao T, Wang G.-W. Chem. Commun. 2011; 47: 9501
  • 24 Neumann WP, Hillgärtner H, Baines KM, Dicke R, Vorspohl K, Kobs U, Nussbeutel U. Tetrahedron 1989; 45: 951
  • 25 Henry O, Lopez-Gallego F, Agger SA, Schmidt-Dannert C, Sen S, Shintani D, Cornish K, Distefano MD. Bioorg. Med. Chem. 2009; 17: 4797
  • 26 Marvin 14.11.24, 2014, ChemAxon; http://www.chemaxon.com.
  • 27 Trott O, Olson AJ. J. Comput. Chem. 2010; 31: 455
  • 28 Corona A, Di Leva FS, Thierry S, Pescatori L, Cuzzucoli Crucitti G, Subra F, Delelis O, Esposito F, Rigogliuso G, Costi R, Cosconati S, Novellino E, Di Santo R, Tramontano E. Antimicrob. Agents Chemother. 2014; 58: 6101
  • 29 Meleddu R, Cannas V, Distinto S, Sarais G, Del Vecchio C, Esposito F, Bianco G, Corona A, Cottiglia F, Alcaro S, Parolin C, Artese A, Scalise D, Fresta M, Arridu A, Ortuso F, Maccioni E, Tramontano E. ChemMedChem 2014; 9: 1869