RSS-Feed abonnieren
DOI: 10.1055/s-0034-1380220
Palladium(II)-Catalyzed C–H Activation and C–C Coupling/Cyclization of Benzamidine and Terminal Alkynes Using an Internal Oxidant
Publikationsverlauf
Received: 11. März 2015
Accepted after revision: 22. April 2015
Publikationsdatum:
09. Juli 2015 (online)
Abstract
Herein, an efficient palladium(II)-catalyzed C–C coupling/cyclization reaction by directed C–H activation of benzamidine and terminal alkynes has been developed. In this practical and high-yielding process, the C–N bond acts as an internal oxidant. It was found that molecules with both electron-donating and electron-withdrawing substituents were suitable substrates for this transformation, and the expected products were obtained in moderate to excellent yields, but when the benzamidine with ortho-methyl substituent is employed, the benzamidine compound may undergo the [1,5]-hydrogen migration, and then Diels–Alder reaction with terminal alkynes to produce the quinoline compound. The use of a single catalytic system to mediate chemical transformations in a synthetic operation is efficient in building complex structures from simple starting materials in an environmentally benign fashion.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380220.
- Supporting Information
-
References and Notes
- 1a Joule JA, Mills K. Heterocyclic Chemistry. 4th ed. Blackwell; Oxford: 2000
- 1b Eicher T, Hauptmann S. The Chemistry of Heterocycles. Wiley-VCH; Weinheim: 2003
- 1c Katrizky AR, Pozharskii AF. Handbook of Heterocyclic Chemistry. 2nd ed. Pergamon; Amsterdam: 2000
- 2 Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
- 3a Roesch KR, Zhang H, Larock RC. J. Org. Chem. 2001; 66: 8042
- 3b Roesch KR, Larock RC. Org. Lett. 1999; 1: 553
- 3c Roesch KR, Larock RC. J. Org. Chem. 1998; 63: 5306
- 3d Larock RC, Yum EK. J. Am. Chem. Soc. 1991; 113: 6689
- 3e Larock RC, Yum EK, Refvik MD. J. Org. Chem. 1998; 63: 7652
- 4a Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 4b Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
- 4c Huestis MP, Chan L, Stuart DR, Fagnou K. Angew. Chem. Int. Ed. 2011; 50: 1338
- 4d Chen J, Song G, Pan C.-L, Li X. Org. Lett. 2010; 12: 5426
- 4e Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
- 4f Fukutani T, Umeda N, Hirano K, Satoh T, Miura M. Chem. Commun. 2009; 5141
- 4g Morimoto K, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 2068
- 4h Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
- 4i Mochida S, Umeda N, Hirano K, Satoh T, Miura M. Chem. Lett. 2010; 39: 744
- 4j Guoyong S, Chen D, Pan C.-L, Crabtree RH, Li X. J. Org. Chem. 2010; 75: 7487
- 4k Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 4l Su Y, Zhao M, Han K, Song G, Li X. Org. Lett. 2010; 12: 5462
-
5a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
-
5b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 5c Zhang X, Liu B, Shu X, Gao Y, Lv H, Zhu J. J. Org. Chem. 2012; 77: 501
- 5d Zhang X, Xu X, Yu Y, Zhao Q. Asian J. Org. Chem. 2014; 3: 281
- 6 Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
- 7 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 8a Wu J, Cui X, Chen L, Jiang G, Wu Y. J. Am. Chem. Soc. 2009; 131: 13888
- 8b Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
- 9a Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
-
9b Mei T.-S, Wang X, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 10806
- 10 Ng K.-H, Chan AS. C, Yu W.-Y. J. Am. Chem. Soc. 2010; 132: 12862
- 11a Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
- 11b Wang D.-H, Wasa M, Giri R, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190
-
11c Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
- 11d Mochida S, Umeda N, Hirano K, Satoh T, Miura M. Chem. Lett. 2010; 39: 744
- 11e Patureau FW, Besset T, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1064