Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(08): 1124-1130
DOI: 10.1055/s-0034-1380186
DOI: 10.1055/s-0034-1380186
letter
Highly Regioselective Arylation of 1,2,3-Triazole N-Oxides with Sodium Arenesulfinates via Palladium-Catalyzed Desulfitative Cross-Coupling Reaction
Further Information
Publication History
Received: 15 December 2014
Accepted after revision: 30 January 2015
Publication Date:
05 March 2015 (online)
Abstract
A convenient and highly regioselective palladium-catalyzed direct C5-arylation of 1,2,3-triazole N-oxides was developed in the presence of silver carbonate and tripotassium phosphate. This protocol allowed use of sodium arylsulfinates, diphenylphosphine oxide, and triphenylphosphine as arylating reagents to produce 2-aryl-5-aryl-1,2,3-triazole N-oxides in good to excellent yields, providing a complement to the existing methods for the direct arylation of 1,2,3-triazole N-oxides.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380186.
- Supporting Information
Primary Data
- for this article are available online at http://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00000083 and can be cited using the following DOI: 10.4125/pd0064th.
- Primary Data
-
References and Notes
- 1a Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
- 1b Corbet JP, Mignani G. Chem. Rev. 2006; 106: 2651
- 1c Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
-
2a Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 2b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 2c Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 2d Ackermann L. Synlett 2007; 507
- 3a Do H, Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
- 3b Huang J, Chan J, Chen Y, Borths C, Kyle K, Larsen R, Margaret M. J. Am. Chem. Soc. 2010; 132: 3674
- 3c Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
- 3d Turner GL, Morris JA, Greaney MF. Angew. Chem. Int. Ed. 2007; 46: 7996
- 3e Canivet J, Yamaguchi J, Ban I, Itami K. Org. Lett. 2009; 11: 1733
- 3f Nadres ET, Lazareva A, Daugulis O. J. Org. Chem. 2011; 76: 471
- 4a Hachiya H, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
- 4b Han W, Mayer P, Ofial AR. Chem. Eur. J. 2011; 17: 6904
- 5a Yang F, Xu Z, Wang Z, Yu Z, Wang R. Chem. Eur. J. 2011; 17: 6321
- 5b Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
- 5c Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
- 5d Bedford RB, Gower NJ, Haddow MF, Harvey JN, Nunn J, Okopie RA, Sankey RF. Angew. Chem. Int. Ed. 2012; 51: 5435
- 5e Maity P, Shacklady-McAtee DM, Yap GP. A, Siriann ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
- 6a Zhang F.-Z, Greaney MF. Angew. Chem. Int. Ed. 2010; 49: 2768
- 6b Zhou J, Hu P, Zhang M, Huang S, Wang M, Su W. Chem. Eur. J. 2010; 16: 5876
-
6c Xie K, Yang Z, Zhou X, Li X, Wang S, Tan Z, An X, Guo C.-C. Org. Lett. 2010; 12: 1564
-
6d Cornella J, Lu P, Larrosa I. Org. Lett. 2009; 11: 5506
- 7a Roger J, Doucet H. Org. Biomol. Chem. 2008; 6: 169
- 7b So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
- 7c Ackermann L, Barfusser S, Pospech J. Org. Lett. 2010; 12: 724
- 8a Miao T, Wang L. Adv. Synth. Catal. 2014; 356: 429
- 8b Miao T, Wang L. Adv. Synth. Catal. 2014; 356: 967
- 8c Wu M.-Y, Luo J.-Y, Xiao F.-H, Zhang S.-F, Deng G.-J, Luo H.-A. Adv. Synth. Catal. 2012; 354: 335
- 8d Rao H.-H, Yang Y, Shuai Q, Li C.-J. Adv. Synth. Catal. 2011; 353: 1701
- 8e Wang G.-W, Miao T. Chem. Eur. J. 2011; 17: 5787
- 8f Liu J, Zhou X.-Y, Rao H.-H, Xiao F.-H, Li C.-J, Deng G.-J. Chem. Eur. J. 2011; 17: 7996
- 8g Liu B, Guo Q, Cheng Y.-Y, Lan J.-B, You J.-S. Chem. Eur. J. 2011; 17: 13415
- 8h Miao T, Li P.-H, Wang G.-W, Wang L. Chem. Asian J. 2013; 8: 3185
- 8i Chen R, Liu S.-W, Liu X.-H, Yang L, Deng G.-J. Org. Biomol. Chem. 2011; 9: 7675
- 8j Miao T, Wang G.-W. Chem. Commun. 2011; 47: 9501
- 8k Zhou X.-Y, Luo J.-Y, Liu J, Peng S.-M, Deng G.-J. Org. Lett. 2011; 13: 1432
- 8l Zhao F, Xiao F.-H, Zhang S.-F, Deng G.-J. Org. Lett. 2013; 15: 1520
- 8m Wang H.-F, Li Y.-M, Zhang R, Jin K, Zhao D.-F, Duan C.-Y. J. Org. Chem. 2012; 77: 4849
- 8n Hu S, Xia P, Cheng K, Qi C.-Z. Appl. Organomet. Chem. 2013; 27: 188
- 8o Wang M, Li D.-K, Zhou W, Wang L. Tetrahedron 2012; 68: 1926
- 9a Amino Group Chemistry, From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2007
- 9b Satoh T, Miura M. Chem. Lett. 2007; 36: 200
- 9c Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
-
9d Engle KM, Mei TS, Wasa M, Yu JQ. Acc. Chem. Res. 2012; 45: 788
- 9e Wan C, Huang Y. Synlett 2013; 24: 145
- 10 Amantini D, Fringuelli F, Piermatti O, Pizzo F, Zunino E, Vaccaro L. J. Org. Chem. 2005; 70: 6526
-
11a Mamidyala SK, Finn MG. Chem. Soc. Rev. 2010; 39: 1252
- 11b Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
- 12 Dorlars A, Schellhammer CW, Schroeder J. Angew. Chem., Int. Ed. Engl. 1975; 14: 665
- 13a Krivopalov VP, Shkurko OP. Russ. Chem. Rev. 2005; 74: 339
- 13b Piribi I, Buscemi S. Curr. Bioact. Compd. 2010; 6: 208
-
14a Liu W, Li Y.-H, Xu B, Kuang C.-X. Org. Lett. 2013; 15: 2342
- 14b Liu W, Li Y.-H, Wang Y, Kuang C.-X. Org. Lett. 2013; 15: 4682
- 15a Chen Z.-W, Luo M.-T, Wen Y.-L, Luo G.-T, Liu L.-X. Org. Lett. 2014; 16: 3020
- 15b Qin W.-B, Zhu J.-Y, Kong Y.-B, Bao Y.-H, Chen Z.-W, Liu L.-X. Org. Biomol. Chem. 2014; 12: 4252
- 15c Bao Y.-H, Zhu J.-Y, Qin W.-B, Kong Y.-B, Chen Z.-W, Tang S.-B, Liu L.-X. Org. Biomol. Chem. 2013; 11: 7938
- 15d Qin W.-B, Chang Q, Bao Y.-H, Wang N, Chen Z.-W, Liu L.-X. Org. Biomol. Chem. 2012; 10: 8814
- 16 Rao B, Zhang W.-X, Hu L, Luo M.-M. Green Chem. 2012; 14: 3436
- 17a Morimoto H, Yoshino T, Yukawa T, Lu G, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2008; 47: 9125
- 17b Lu X.-Y, Zhang C.-M, Xu Z.-R. Acc. Chem. Res. 2001; 34: 535
- 18a Rummelt SM, Ranocchiari M, van Bokhoven JA. Org. Lett. 2012; 14: 2188
-
18b Zhang X.-H, Liu H.-Z, Hu X.-M, Tang G, Zhu J, Zhao Y.-F. Org. Lett. 2011; 13: 3478
- 18c Zhuang R.-Q, Xu J, Cai Z.-S, Tang G, Fang M.-J, Zhao Y.-F. Org. Lett. 2011; 13: 2110
- 18d Andaloussi M, Lindh J, Sävmarker J, Sjöberg PJ. R, Larhed M. Chem. Eur. J. 2009; 15: 13069
- 19 Baba K, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11892
- 20 General Procedure for the Preparation of 2-Aryl-5-aryl-1,2,3-triazole N-Oxides To a solution of 2-aryl-1,2,3-triazole N-oxide (0.2 mmol), Pd(OAc)2 (0.01 mmol), Ag2CO3 (0.2 mmol), 1,10-phenanthroline (0.08 mmol), and K3PO4 (0.4 mmol) in a mixed solvent of DME–DMF (3:7 v/v, 1 mL) was added sodium arylsulfinate (0.24 mmol) under an air atmosphere, and the mixture was stirred at 80 °C for 12 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc–PE, 1:4) to yield the corresponding product 6. All products were characterized by MS, IR, 1H NMR, and 13C NMR spectroscopy.
- 21 Selected Physical and Spectral data for 2-Phenyl-5-p-tolyl-2H-1,2,3-triazole 1-oxide (6aa): white amorphous solid; IR (KBr): 1593, 1135, 510 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.06 (d, J = 8.2 Hz, 2 H, Ar-H), 8.02 (s, 1 H, Ar-H), 7.98 (dd, J = 7.5, 1.4 Hz, 2 H, Ar-H), 7.56 (t, J = 7.5 Hz, 2H, Ar-H), 7.48 (dt, J = 7.5, 1.4 Hz, 1 H, Ar-H), 7.33 (d, J = 8.2 Hz, 2H, Ar-H), 2.43 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ = 139.7, 135.2, 131.1, 129.6, 129.1, 129.0, 127.1, 125.7, 123.3, 122.6, 21.4. MS (ESI): 252 (M + H+, 100). Anal. calcd for C15H13N3O: C, 71.70; H, 5.21; N, 16.72. Found C, 71.35; H, 5.46; N, 16.37.
For reviews on biaryl syntheses, see:
For recent reviews on C–H bond functionalizations, see:
For selected examples of direct arylation by using aryl halides, see:
For selected examples of direct arylation by using aryl boronic acids, see:
For recent reviews, see: