Synlett 2015; 26(07): 991-994
DOI: 10.1055/s-0034-1380176
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Chlorins by Diels–Alder Cycloadditions of Pheophorbide a and Its Derivatives

Anamarija Briš
a   Laboratory for Physical-Organic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia   Email: margetid@irb.hr
,
Željko Marinić
b   Center for NMR, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
,
Zhi-Long Chen
c   College of Chemistry, Chemical engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, P. R. of China
,
Davor Margetić*
a   Laboratory for Physical-Organic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia   Email: margetid@irb.hr
› Author Affiliations
Further Information

Publication History

Received: 05 December 2014

Accepted after revision: 21 January 2015

Publication Date:
18 February 2015 (online)


Dedicated to Professor Ron Warrener on the occasion of his 80th birthday

Abstract

The Diels–Alder reaction was exploited for the preparation of novel long-wavelength chlorin photodynamic therapy photosensitizers. The styryl group and furan carboxamide substituents were used as diene components in [4+2] cycloaddition functionalizations.

Supporting Information

 
  • References and Notes

  • 1 Pandey RK, Bellnier DA, Smith KM, Dougherty TJ. Photochem. Photobiol. 1991; 53: 65
  • 2 Sternberg ED, Dolphin D. Tetrahedron 1998; 54: 4151
  • 3 Zhang J, Deng L, Yao J, Gu P, Yang F, Wang X, Liu W, Zhang Y, Ke X, Jing X, Chen J. Bioorg. Med. Chem. 2011; 11: 5520 ; and references cited therein
  • 7 Yao J, Zhang W, Sheng C, Miao Z, Yang F, Yu J, Zhang L, Song Y, Zhou T, Zhou Y. Bioorg. Med. Chem. Lett. 2008; 18: 293
  • 8 All novel compounds gave satisfactory 1H, 13C NMR, and high-resolution mass spectra. Representative 1H NMR spectroscopic data: Compound 3: Obtained as a 1:1 mixture of 2-epimers. 1H NMR (300 MHz, CDCl3): δ = –1.81, –1.76 (s, 1 H, NH), –0.98, –0.92 (s, 1 H, NH), 1.78 (t, J = 7.5 Hz, 3 H, 82-CH3), 2.36, 2.39 (s, 3 H, 181-CH3), 2.93–3.01 (m, 1 H, 17-CH2), 3.04–3.11 (m, 1 H, 172-CH2), 3.41 (s, 3 H, 7-CH3), 3.46, 3.47 (s, 3 H, 2-CH3), 3.70. 3.71 (s, 3 H, 12-CH3), 3.74, 3.75 (s, 3 H, OCH3), 3.79 (s, 3 H, OCH3), 3.86 (s, 3 H, OCH3), 3.91 (q, J = 7.5 Hz, 2 H, 81-CH2), 3.96 (dd, J = 13.9, 5.1 Hz, 1 H, 171-CH2), 4.05 (dd, J = 9.5, 3.1 Hz, 1 H, 171-CH2), 4.09 (t, J = 4.1 Hz, 2 H, 32- =CCH2), 4.11–4.15 (m, 1 H, 171-CH2), 6.77, 6.79 (s, 1 H, 151-CH), 7.01 (t, J = 4.1 Hz, 1 H, 31- =CH), 7.09 (t, J = 4.1 Hz, 1 H, 31- =CH), 9.12, 9.14 (s, 1 H, 20-CH), 9.21, 9.24 (s, 1 H, 5-CH), 9.78 (s, 1 H, 10-CH). Compound 5: 1H NMR (300 MHz, CDCl3): δ = –1.79 (s, 1 H, NH), –1.59 (br. s, 1 H, NH), 1.69 (t, J = 6.6 Hz, 3 H, 82-CH3), 1.71 (d, J = 7.3 Hz, 3 H, 181-CH3), 1.76–1.84 (m, 1 H, 17-CH2), 2.11–2.17 (m, 1 H, 17-CH2), 2.18–2.25 (m, 1 H, 17-CH2), 2.46–2.55 (m, 1 H, 17-CH2), 3.31 (s, 3 H, 7-CH3), 3.48 (s, 3 H, 12-CH3), 3.53 (s, 3 H, 2-CH3), 3.59 (s, 3 H, 15-OCH3), 3.73 (s, 3 H, 17-OCH3), 3.78 (q, J = 6.6 Hz, 2 H, 81-CH2), 4.37 (dd, J = 10.4, 2.3 Hz, 1 H, 17-CH), 4.45 (q, J = 7.3 Hz, 1 H, 18-CH), 4.85 (dd, J = 15.3, 4.9 Hz, 1 H, 132-CH2), 5.04 (dd, J = 15.3, 4.9 Hz, 1 H, 132-CH2), 5.26 (d, J = 18.8 Hz, 1 H, 151-CH2), 5.52 (d, J = 18.8 Hz, 1 H, 151-CH2), 6.14 (dd, J = 11.6, 1.1 Hz, 1 H, 32-C=CH2), 6.35 (dd, J = 11.6, 1.1 Hz, 1 H, 32-C=CH2), 6.42 (dd, J = 3.3, 1.8 Hz, 1 H, 132-ArH), 6.49 (d, J = 2.9 Hz, 1 H, 137-ArH), 6.75 (t, J = 5.3 Hz, 1 H, 132-NH), 7.49 (dd, J = 1.8, 0.8 Hz, 1 H, 138-ArH), 8.08 (dd, J = 18.1, 11.5 Hz, 1 H, 31-CH=), 8.79 (s, 1 H, 20-H), 9.62 (s, 1 H, 5-H), 9.68 (s, 1 H, 10-H).
  • 9 Haner J, Kelsey J, Menard ML, Howel J, Nagireddy J, Raheem MA, Tam W. Synthesis 2012; 44: 2713
  • 10 Winling A, Russell RA. J. Chem. Soc., Perkin Trans. 1 1998; 3921
  • 11 Hong V, Kislukhin AA, Finn MG. J. Am. Chem. Soc. 2009; 131: 9986
  • 12 Warrener RN, Butler DN, Margetić D. Aust. J. Chem. 2003; 56: 811
  • 13 Margetić D, Warrener RN. J. Heterocycl. Chem. 2014; 51: 1369
  • 14 Uchoa AF, de Oliveira KT, Baptista MS, Bortoluzzi AJ, Iamamoto Y, Serra OA. J. Org. Chem. 2011; 76: 8824