Synlett 2015; 26(04): 441-448
DOI: 10.1055/s-0034-1380156
account
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Cross-Coupling Reactions of Cyclopropanols

David Rosa
Department of Chemistry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada   Email: aorellan@yorku.ca
,
Andrei Nikolaev
Department of Chemistry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada   Email: aorellan@yorku.ca
,
Nisha Nithiy
Department of Chemistry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada   Email: aorellan@yorku.ca
,
Arturo Orellana*
Department of Chemistry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada   Email: aorellan@yorku.ca
› Author Affiliations
Further Information

Publication History

Received: 30 September 2014

Accepted after revision: 21 January 2015

Publication Date:
05 February 2015 (online)


Abstract

Strained alcohols have featured prominently in a wide array of transition-metal-catalyzed cross-coupling reactions, but methods involving cyclopropanols have only been developed relatively recently. In this account, we describe our group’s work in this area, and we provide a concise summary of other palladium-catalyzed methods for C–C bond-forming reactions using cyclopropanols.

1 Introduction

2 Cross-Coupling Reactions Using Strained Tertiary Alcohols

3 Base- or Acid-Mediated Ring-Opening Reactions of Strained Alcohols

4 Palladium-Catalyzed Cross-Coupling Reactions of Cyclopropanols

4.1 Palladium-Catalyzed Cross-Coupling Reactions of Cyclopropanols with Aryl Halides

4.2 Palladium-Catalyzed Cross-Coupling Reactions of Cyclopropanols with Benzyl Halides

4.3 Palladium-Catalyzed Cross-Coupling Reactions of Cyclopropanols with Acyl Halides

4.4 Direct Arylation Using Cyclopropanol-Derived Palladium Homo­enolates

4.5 Synthesis of Quinolines from Cyclopropanols

5 Conclusions

 
  • References

  • 1 Nishimura T, Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
  • 2 Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
  • 3 Waibel M, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 4455
    • 4a Cohen T, Bhupathy M, Matz JR. J. Am. Chem. Soc. 1983; 105: 520
    • 4b Bury A, Earl HA, Stirling CJ. M. J. Chem. Soc., Perkin. Trans. 2 1987; 1281
    • 4c Forward P, Hunter WN, Leonard GA, Palou J, Walmsley D, Watt CI. F. J. Chem. Soc., Perkin Trans. 2 1993; 931

      For seminal work on the ring-opening chemistry of cyclopropanols, see:
    • 5a Nickon A, Lambert JL. J. Am. Chem. Soc. 1962; 84: 4604
    • 5b DePuy CH, Breitbeil FW. J. Am. Chem. Soc. 1963; 85: 2176
    • 5c Nickon A, Hammons JH, Lambert JL, Williams RO. J. Am. Chem. Soc. 1963; 85: 3713
    • 5d DePuy CH, Breitbeil FW, DeBruin KR. J. Am. Chem. Soc. 1966; 88: 3347
    • 5e DePuy CH, Andrist AH, Fünfschilling PC. J. Am. Chem. Soc. 1974; 96: 948

    • For reviews, see:
    • 5f DePuy CH. Acc. Chem. Res. 1968; 1: 33
    • 5g Gibson DH, DePuy CH. Chem. Rev. 1974; 74: 605
    • 5h Kulinkovich OL. Chem. Rev. 2003; 103: 2597
  • 6 For example, 1,2-diphenylcyclopropanols are about 106 times more reactive than 1,2-diphenylcyclobutanols towards ring opening in aqueous base. See Ref. 4 (c).
    • 7a Aoki S, Fujimura T, Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1988; 110: 3296
    • 7b Aoki S, Fujimura T, Nakamura E, Kuwajima I. Tetrahedron Lett. 1989; 30: 6541
  • 8 The analogous reaction using iodonium tetrafluoroborates as cross-coupling partners has also been reported; see: Kang S.-K, Yamagushi T, Ho P.-S, Kim W.-Y, Yoon S.-K. Tetrahedron Lett. 1997; 38: 1947
  • 10 Park S.-B, Cha JK. Org. Lett. 2000; 2: 147
  • 11 For a second report of the same transformation, see: Okumoto H, Jinnai T, Shimizu H, Harada Y, Mishima H, Suzuki A. Synlett 2000; 629

    • The reductive palladium-catalyzed ring opening of cyclopropanols has also been reported, see:
    • 12a Shan M, O’Doherty GA. Org. Lett. 2008; 10: 3381
    • 12b Shan M, O’Doherty GA. Synthesis 2008; 3171
    • 13a Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett. 1966; 7: 3353
    • 13b Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53
    • 14a Simmons HE, Smith RD. J. Am. Chem. Soc. 1958; 80: 5323
    • 14b Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
  • 15 Rosa D, Orellana A. Org. Lett. 2011; 13: 110
  • 16 Kulinkovich O, de Meijere A. Chem. Rev. 2000; 100: 2789 ; See also Ref. 5(h)
  • 17 Rosa D, Orellana A. Chem. Commun. 2013; 49: 5420
  • 18 Cheng K, Walsh PJ. Org. Lett. 2013; 15: 2298
  • 19 Matsubara S, Oshima K, Utimoto K. J. Organomet. Chem. 2001; 617–618: 39
  • 20 Cheng K, Carrol PJ, Walsh PJ. Org. Lett. 2011; 13: 2346
  • 22 Nithiy N, Orellana A. Org. Lett. 2014; 16: 5854
  • 23 Parida BB, Das PP, Niocel M, Cha JK. Org. Lett. 2013; 15: 1780
  • 24 Rosa D, Orellana A. Chem. Commun. 2012; 48: 1922
  • 25 Mitsudome T, Mizumoto K, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2010; 49: 1238
    • 26a Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
    • 26b Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
    • 26c Davies DL, Donald SM. A, Macgregor SA. J. Am. Chem. Soc. 2005; 127: 13754
  • 27 Nikolaev A, Nithiy N, Orellana A. Synlett 2014; 25: 2301