Synlett 2015; 26(06): 765-770
DOI: 10.1055/s-0034-1380128
letter
© Georg Thieme Verlag Stuttgart · New York

Gold-Catalyzed, SN1-Type Reaction of Alcohols to Afford Ethers and Cbz-Protected Amines

Andrew R. S. Vinson
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Victoria K. Davis
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Arunamarie Arunasalam
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Kate A. Jesse
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Rachael E. Hamilton
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Morgan A. Shattuck
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Allison C. Hu
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Robert G. Iafe
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
,
Anna G. Wenzel*
Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA   Email: awenzel@kecksci.claremont.edu
› Author Affiliations
Further Information

Publication History

Received: 13 December 2014

Accepted after revision: 06 January 2015

Publication Date:
09 February 2015 (online)


Abstract

The use of a gold-catalyzed, microwave protocol to activate alcohols through an intermolecular, SN1-type reaction to directly form unsymmetrical ethers and N-benzyloxy carbamate- (Cbz) protected amines is reported. Results have shown this reaction to be highly reproducible and tolerant of moisture, and moderate to high product yields (53–99%) were obtained. Significantly, the intermolecular catalytic amination of alcohols to directly afford Cbz-protected amines is heretofore unprecedented using gold catalysis.

Supporting Information

 
  • References and Notes

  • 1 Hashmi AS. K. Gold Bull. 2004; 37: 51

    • For reviews, see:
    • 2a Wang Y.-M, Lackner AD, Toste FD. Acc. Chem. Res. 2014; 47: 889
    • 2b Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 2c Debleds O, Gayon E, Vrancken E, Campagne J.-M. Beilstein J. Org. Chem. 2011; 7: 866
    • 2d Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
    • 2e Shapiro ND, Toste FD. Synlett 2010; 675
    • 2f Sengupta S, Shi X. ChemCatChem 2010; 2: 609
    • 2g Gagosz F. Tetrahedron 2009; 65: 1747
    • 2h Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
    • 2i Muzart J. Tetrahedron 2008; 64: 5815
    • 2j Krause N, Belting V, Deutsch C, Erdsack J, Fan H.-T, Gockel B, Hoffmann-Röder A, Morita N, Volz F. Pure Appl. Chem. 2008; 80: 1063
    • 3a Chattaraj PK, Lee H, Parr RG. J. Am. Chem. Soc. 1991; 113: 1855
    • 3b Ho T.-L. Hard and Soft Acids and Bases Principle in Organic Chemistry. Academic Press; New York: 1977
  • 4 Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
  • 5 Gorin DJ, Toste FD. Nature 2007; 446: 395
    • 6a Lopes SM. M, Santos BS, Palacios F, Pinho e Melo TM. V. D. ARKIVOC 2010; (v): 70
    • 6b Lambert TH, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 13646
    • 7a Nakamura A, Tokunaga M. Tetrahedron Lett. 2008; 49: 3729
    • 7b Umetsu K, Asao N. Tetrahedron Lett. 2008; 49: 7046
    • 7c Jung HH, Floreancig PE. J. Org. Chem. 2007; 72: 7359
    • 7d Jung HH, Floreancig PE. Org. Lett. 2006; 8: 1941
    • 8a Mukherjee P, Widenhoefer RA. Chem. Eur. J. 2013; 19: 3437
    • 8b Young PC, Schopf NA, Lee A.-L. Chem. Commun. 2013; 49: 4262
    • 8c Wright JR, Young PC, Lucas NT, Lee A.-L, Crowley JD. Organometallics 2013; 32: 7065
    • 9a Jiang X, London EK, Morris DJ, Clarkson GJ, Willis M. Tetrahedron 2010; 66: 9828
    • 9b Bongers N, Krause N. Angew. Chem. Int. Ed. 2008; 47: 2178
    • 9c Volz F, Krause N. Org. Biomol. Chem. 2007; 5: 1519
    • 9d Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
    • 9e Hoffmann-Röder A, Krause N. Org. Biomol. Chem. 2005; 37: 387
    • 10a Ghebreghiorgis T, Biannic B, Kirk BH, Ess DH, Aponick A. J. Am. Chem. Soc. 2012; 134: 16307
    • 10b Aponick A, Biannic B. Org. Lett. 2011; 13: 1330
    • 10c Biannic B, Ghebreghiorgis T, Aponick A. Beilstein J. Org. Chem. 2011; 7: 802
    • 10d Unsworth WP, Stevens K, Lamont SG, Robertson J. Chem. Commun. 2011; 47: 7659
    • 10e Aponick A, Biannic B, Jong MR. Chem. Commun. 2010; 46: 6849
    • 10f Bandini M, Monari M, Romaniello A, Tragni M. Chem. Eur. J. 2010; 16: 14272
    • 10g Aponick A, Li CY, Biannic B. Org. Lett. 2008; 10: 669
  • 11 Please see the Supporting Information.
    • 12a Wimberg J, Meyer S, Dechert S, Meyer F. Organometallics 2012; 31: 5025
    • 12b Cuenca AB, Mancha G, Asensio G, Medio-Simón M. Chem. Eur. J. 2008; 14: 1518
  • 13 Oae S, Kiritani R. Bull. Chem. Soc. Jpn. 1966; 39: 611
    • 14a Scotti N, Monticelli D, Zaccheria F. Inorg. Chim. Acta 2012; 380: 194
    • 14b Hui W, Xingfei Z, Yangning L, Yue L, Xiang G. Chin. J. Chem. 2011; 29: 1180
    • 14c Öztürk G, Gümgüm B. React. Kinet. Catal. Lett. 2004; 82: 395
    • 14d Falkowski J, Schick K, Gutsche B, Heck S. WO 9950213, 1999
    • 14e Jain JR, Pillai CN. Tetrahedron Lett. 1965; 675
  • 15 Roggin M, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 5568
    • 16a Liu Y, Hua R, Sun H.-B, Qiu X. Organometallics 2005; 24: 2819
    • 16b Sherry BD, Radosevich AT, Toste FD. J. Am. Chem. Soc. 2003; 125: 6076
    • 16c Zhu Z, Espenson JH. J. Org. Chem. 1996; 61: 324
  • 17 Busetto L, Mazzoni R, Salmi M, Zacchini S, Zanotti V. RSC Adv. 2012; 2: 6810
    • 18a Bricout H, Carpentier J.-F. J. Mol. Catal. A: Chem. 1998; 36: 243
    • 18b Ouertani M, Collin J, Kagan HB. Tetrahedron 1985; 41: 3689
    • 19a Ekhardt M. US Patent 20140221349, 2014
    • 19b O’Collins VE, Donnan GA, MacLeod MR, Howells DW. J. Cereb. Blood Flow Metab. 2013; 33: 1141
    • 19c Woolf CJ, Bean BP. WO 2011006073, 2011
    • 19d Wu D, Pontillo J, Ching B, Hudson S, Gao Y, Fleck BA, Gogas K, Wade WS. Bioorg. Med. Chem. Lett. 2008; 18: 4224
    • 20a Topinka M, Tata RR, Harmata M. Org. Lett. 2014; 16: 4476
    • 20b Nemoto T, Matsuo N, Hamada Y. Adv. Synth. Catal. 2014; 356: 2417
    • 20c Huguet N, Leboeuf D, Echavarren AM. Chem. Eur. J. 2013; 19: 6581
    • 20d Coutant E, Young PC, Barker G, Lee A.-L. Beilstein J. Org. Chem. 2013; 9: 1797
    • 20e Dell’Acqua M, Facoetti D, Pirovano V, Abbiati G, Rossi E. Targets Heterocycl. Syst. 2011; 15: 86
  • 21 Rao W, Chan PW. H. Org. Biomol. Chem. 2008; 6: 2426
  • 22 Georgy M, Boucard V, Debleds O, Zotto CD, Campagne J.-M. Tetrahedron 2009; 65: 1758
  • 23 Carey FA, Sundberg RJ. Advanced Organic Chemistry Part A: Structure and Mechanisms . Springer; New York: 2008. 5th ed. 335-341
    • 24a Zhang T, Qiao Z, Wang Y, Zhong N, Liu L, Wang D, Chen Y. Chem. Commun. 2013; 49: 1636
    • 24b Kobayashi S, Arai K, Yamakawa T, Chen Y, Salter MM, Yamashita Y. Adv. Synth. Catal. 2011; 353: 1927
    • 24c Zhang L, Cui L, Li X, Li J, Luo S, Cheng J. Eur. J. Org. Chem. 2010; 25: 4876
    • 24d Zhang L, Cui L, Li X, Li J, Luo S, Cheng J. Chem. Eur. J. 2010; 16: 2045
  • 25 Han F, Yang L, Xia C. Adv. Synth. Catal. 2012; 354: 1052
    • 26a Oldenhuis NJ, Dong VM, Guan Z. J. Am. Chem. Soc. 2014; 136: 12548
    • 26b Zhu Z, Espenson Z. J. Org. Chem. 1996; 61: 324
  • 27 For a review, see: Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. ChemCatChem 2011; 3: 1853
  • 28 Hikawa H, Suzuki H, Yokoyama Y, Azumaya I. J. Org. Chem. 2013; 78: 6714
  • 29 Guo S, Song F, Liu Y. Synlett 2007; 964
  • 30 Ohshima T, Ipposhi J, Nakahara Y, Shibuya R, Mashima K. Adv. Synth. Catal. 2012; 354: 2447
  • 31 Nesi M, Brasca MG, Longo A, Moretti W, Panzeri A. Tetrahedron Lett. 1997; 38: 4881
  • 32 Brooner RE. M, Brown TJ, Widenhoefer RA. Chem. Eur. J. 2013; 19: 8276
  • 33 Weber D, Gagne MR. Chem. Commun. 2011; 47: 5172
  • 34 Zalesskiy SS, Sedykh AE, Kashin AS, Ananikov VP. J. Am. Chem. Soc. 2013; 135: 3550
  • 35 For a review, see: Boronat M, Leyva-Pérez A, Corma A. Acc. Chem. Res. 2014; 47: 834
    • 36a Oliver-Meseguer J, Cabrero-Antonino JR, Dominguez I, Leyva-Perez A, Corma A. Science 2012; 338: 1452
    • 36b Zheng J, Zhang C, Dickson RM. Phys. Rev. Lett. 2004; 93: 077402-1
  • 37 SN1 Reaction; Typical Procedure for 20b: A stock solution was prepared in an oven-dried, 4-mL vial equipped with a septum cap; the stock contained the carbocation-forming alcohol 10 (0.375 mmol, 1.0 equiv), the nucleophilic alcohol 7b (1.88 mmol, 5.0 equiv), and undecane (internal standard for GC; 0.075 mmol, 0.2 equiv), which were dissolved in dichloroethane (2.4 mL) until homogeneous. In a glove box, a second solution was prepared in an oven-dried, foil-covered, 0.5–2.0 mL microwave vial by first measuring out AuClPPh3 (6.2 mg, 0.0125 mmol, 5 mol%) and AgSbF6 (4.3 mg, 0.0125 mmol, 5 mol%). The vial was sealed with a crimp-top cap equipped with a septum, then it was removed from the glovebox and attached to a needle connected to a nitrogen line. Dichloroethane (0.2 mL) was added into the microwave vial by using a syringe, and the resulting mixture was stirred for 10 min to initiate the catalyst. Two-thirds of the stock solution was then added to the microwave vial. The nitrogen line was removed, and the reaction vial was placed in a microwave reactor and heated to 50 °C for 90 min. The reaction was directly purified by flash chromatography on silica gel. After purification of the product, its GC response factor was determined and retroactively used to calculate the reaction yields from the corresponding GC data; GC yields (97%) were correlated with the isolated yield (48 mg, 94%) obtained from duplicate reactions. IR (Na plate): 2949, 2869, 1119, 1080 cm–1; 1H NMR (500 MHz, CDCl3, 20 °C): δ = 7.43–7.41 (m, 1 H), 7.21–7.17 (m, 2 H), 7.12–7.09 (m, 1 H), 4.41 (t, J = 5.1 Hz, 1 H), 3.45 (dd, J = 8.7, 8.8 Hz, 1 H), 3.29 (dd, J = 8.7, 8.7 Hz, 1 H), 2.89–2.82 (m, 1 H), 2.77–2.70 (m, 1 H), 2.07–1.89 (m, 4 H), 1.79–1.72 (m, 1 H), 0.99 (d, J = 6.8 Hz, 3 H), 0.98 (d, J = 6.8 Hz, 3 H). 13C NMR (125 MHz, CDCl3, 20 °C): δ = 137.4, 137.3, 129.1, 128.8, 127.2, 125.7, 75.8, 75.6, 29.2, 28.9, 28.1, 19.6, 19.1. HRMS (EI+): m/z [M + H – H2] calcd for C14H19O: 203.1436; found: 203.1447.