Synlett 2015; 26(06): 779-784
DOI: 10.1055/s-0034-1380126
letter
© Georg Thieme Verlag Stuttgart · New York

N-Functionalized Amino Acids Promoted Aerobic Copper-Catalyzed Oxidation of Benzylic Alcohols in Water

Guofu Zhang
College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   eMail: dingcr@zjut.edu.cn   eMail: shans2001@163.com
,
Jie Lei
College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   eMail: dingcr@zjut.edu.cn   eMail: shans2001@163.com
,
Xingwang Han
College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   eMail: dingcr@zjut.edu.cn   eMail: shans2001@163.com
,
Yuxin Luan
College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   eMail: dingcr@zjut.edu.cn   eMail: shans2001@163.com
,
Chengrong Ding*
College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   eMail: dingcr@zjut.edu.cn   eMail: shans2001@163.com
,
Shang Shan*
College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   eMail: dingcr@zjut.edu.cn   eMail: shans2001@163.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 18. November 2014

Accepted after revision: 05. Januar 2015

Publikationsdatum:
09. Februar 2015 (online)


Abstract

Instead of traditional N,N-bidentate ligands, N-functionlized amino acids were used as powerful N,O-bidentate ligands in aerobic copper/TEMPO-catalyzed system for promoting oxidation of benzylic alcohols. Under the optimized reaction conditions, a wide range of primary and secondary benzylic alcohols have been efficiently converted into aldehydes and ketones with good to excellent yields in water.

Supporting Information

 
  • References and Notes

    • 1a Sheldon RA, Kochi JK. Metal-Catalysed Oxidations of Organic Compounds 1981
    • 1b Schultz MJ, Sigman MS. Tetrahedron 2006; 62: 8227
    • 1c Parmeggiani C, Cardona F. Green Chem. 2012; 14: 547
    • 2a Trahanovsky WS. Oxidation in Organic Chemistry. Blomquist AT, Wasserman H. Academic Press; New York: 1978
    • 2b Cainelli G, Cardillo G. Chromium Oxidations in Organic Chemistry. Springer; Berlin: 1984
  • 3 David HB, Ironb MA, Neumann R. Chem. Commun. 2013; 49: 1720
    • 4a Markó IE, Giles PR, Tsukazaki MI, Regnaut C, Urch CJ, Brown SM. J. Am. Chem. Soc. 1997; 119: 12661
    • 4b Dijksman A, Arends IW. C. E, Sheldon RA. Chem. Commun. 1999; 1591
    • 4c Dijksman A, Marino-González A, Payeras AM, Arends IW. C. E, Sheldon RA. J. Am. Chem. Soc. 2001; 123: 6826
    • 4d Zhan BZ, White MA, Sham TK, Pincock JA, Doucet RJ, Rao KV. R, Robertson KN, Cameron TS. J. Am. Chem. Soc. 2003; 125: 2195
    • 4e Mori S, Takubo M, Makida K, Yanase T, Aoyagi S, Maegawa T, Monguchi Y, Sajiki H. Chem. Commun. 2009; 5159
    • 5a Peterson KP, Larock RC. J. Org. Chem. 1998; 63: 3185
    • 5b Nishimura T, Onoue T, Uemura K, Ohe S. J. Org. Chem. 1999; 64: 6750
    • 5c Schultz MJ, Park CC, Sigman MS. Chem. Commun. 2002; 3034
    • 5d Sigman MS, Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 5e Zhang GF, Wang Y, Wen X, Ding CR, Li Y. Chem. Commun. 2012; 48: 2979
    • 5f Liu C, Tang S, Lei A. Chem. Commun. 2013; 49: 1324
    • 6a Guan BT, Xing D, Cai GX, Wan XB, Yu N, Fang Z, Yang LP, Shi ZJ. J. Am. Chem. Soc. 2005; 127: 18004
    • 6b Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 4151
    • 6c Karimi B, Esfahani FK. Adv. Synth. Catal. 2012; 354: 1319
    • 7a Fujita K, Yoshida T, Imori Y, Yamaguchi R. Org. Lett. 2011; 13: 2278
    • 7b Kawahara R, Fujita K, Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643
    • 8a Liu XL, Xia QQ, Zhang YJ, Chen CY, Chen WZ. J. Org. Chem. 2013; 78: 8531
    • 8b Allen SE, Walvoord RR, Salinas RP, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 8c Jiang N, Ragauskas AJ. Org. Lett. 2005; 7: 3689
    • 8d Yang G, Zhu W, Zhang P, Xue H, Wang W, Tian J, Song M. Adv. Synth. Catal. 2008; 350: 542
    • 8e Jiang N, Vinci D, Liotta CL, Eckert CA, Ragauskas AJ. Ind. Eng. Chem. Res. 2008; 47: 627
    • 8f Jiang N, Ragauskas AJ. ChemSusChem 2008; 1: 823
    • 8g Liang L, Rao G, Sun HL, Zhang JL. Adv. Synth. Catal. 2010; 352: 2371
    • 8h Dhakshinamoorthy A, Alvaro M, Garcia H. ACS Catal. 2011; 1: 48
    • 8i Mase N, Mizumori T, Tatemoto Y. Chem. Commun. 2011; 47: 2086
    • 9a Markó IE, Giles PR, Tsukazaki M, Chellé RI, Gautier A, Brown SM, Urch CJ. Science 1996; 274: 2044
    • 9b Markó IE, Giles PR, Tsukazaki M, Chellé RI, Gautier A, Brown SM, Urch CJ. J. Org. Chem. 1999; 64: 2433
    • 10a Gamez P, Arends IW. C. E, Reedijka J, Sheldon RA. Chem. Commun. 2003; 2414
    • 10b Gamez P, Arends IW. C. E, Sheldon RA, Reedijka J. Adv. Synth. Catal. 2004; 346: 805
    • 11a Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
    • 11b Hill NJ, Hoover JM, Stahl SS. J. Chem. Educ. 2013; 90: 102
    • 11c Steves JE, Stahl SS. J. Am. Chem. Soc. 2013; 135: 15742
    • 11d Greene JF, Hoover JM, Mannel DS, Root TW, Stahl SS. Org. Process Res. Dev. 2013; 17: 1247
    • 12a Velusamy S, Srinivasan A, Punniyamurthy T. Tetrahedron Lett. 2006; 47: 923
    • 12b Sarmah P, Das BK, Phukan P. Catal. Commun. 2010; 11: 932

      For selected examples of amino acids as ligands to promote cross-couplings reaction, see:
    • 13a Zhang H, Cai Q, Ma DW. J. Org. Chem. 2005; 70: 5164
    • 13b Xie XA, Chen Y, Ma DW. J. Am. Chem. Soc. 2006; 128: 16050
    • 13c Ma DW, Cai Q. Acc. Chem. Res. 2008; 41: 1450
    • 13d Grauer A, Späth A, Ma DW, König B. Chem. Asian J. 2009; 4: 1134

      For selected examples of amino acids as ligands to promote C–H activation, see:
    • 14a Engle KM, Wang DH, Yu JQ. J. Am. Chem. Soc. 2010; 132: 14137
    • 14b Engle KM, Thuy-Boun PS, Dang M, Yu JQ. J. Am. Chem. Soc. 2011; 133: 18183
    • 14c Engle KM, Mei TS. M, Wasa YuJ. Q. Acc. Chem. Res. 2012; 45: 788

      For selected examples of amino acids as ligands to promote copper-catalyzed oxidation, see:
    • 15a Chong HS, Ma X, Lee H, Bui P, Song HA, Birch N In Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008. American Chemical Society; Washington DC: 2008. Abstr. 323
    • 15b Chong HS, Song HA, Lee T, Cheng DF, Lee H, Ma X In Abstracts of Papers 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008. American Chemical Society; Washington DC: 2008. Abstr. 33
    • 15c Södergren MJ, Andersson PG. Tetrahedron Lett. 1996; 37: 7577
    • 15d Li Q, Hu YH In Abstracts of Papers, 247th ACS National Meeting & Exposition, Dallas, TX, March 16–21, 2014. American Chemical Society; Washington DC: 2014. Abstr. 360
  • 16 Zhang GF, Han XW, Luan YX, Wang Y, Wen X, Ding CR. Chem. Commun. 2013; 49: 7908

    • For selected reviews of aqueous reaction, see:
    • 17a Kärkäs MD, Johnston EV, Verho O, Åkermark B. Acc. Chem. Res. 2014; 47: 100
    • 17b Simon MO, Li CJ. Chem. Soc. Rev. 2012; 41: 1415
    • 17c Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 17d Li CJ, Chan TH. Comprehensive Organic Reactions in Aqueous Media . Wiley; New York: 2007. 2nd ed.
    • 17e Li CJ. Acc. Chem. Res. 2010; 43: 581
    • 17f Wagner JR, Cadet J. Acc. Chem. Res. 2010; 43: 564
    • 17g Li CJ. Chem. Rev. 2005; 105: 3095
    • 17h Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
    • 17i Franzén R, Xu YJ. Can. J. Chem. 2005; 83: 266
    • 17j Liu N, Liu C, Jin ZL. Chin. J. Org. Chem. 2012; 32: 860

      For selected examples of aerobic aqueous oxidation of alcohols, see:
    • 18a Figiel PJ, Leskelä M, Repo T. Adv. Synth. Catal. 2007; 349: 1173
    • 18b Figiel PJ, Sibaouih A, Ahmad JU, Nieger M, Räisänen MT, Leskelä M, Repo T. Adv. Synth. Catal. 2009; 351: 2625
    • 18c Figiel PJ, Kirillov AM, Karabach YY, Kopylovich MN, Pomberio AJ. L. J. Mol. Catal. A: Chem. 2009; 305: 178
    • 18d Zhang GF, Han XW, Luan YX, Wang Y, Wen X, Xu L, Ding CR, Gao JR. RSC Adv. 2013; 3: 19255
    • 18e Chen C, Liu B, Chen WZ. Synthesis 2013; 45: 3387
    • 18f Lipshutz BH, Hageman M, Fennewald JC, Linstadt R, Slack E, Voigtritter K. Chem. Commun. 2014; 50: 11378
    • 18g Miao CX, Wang JQ, Yu B, Cheng WG, Sun J, Chanfreau S, He LN, Zhang SJ. Chem. Commun. 2011; 47: 2697
  • 19 General Procedures for the Copper-Catalyzed Primary Benzylic Alcohol Oxidation under Air in Water (p-Methylbenzyl Alcohol)A mixture of p-methylbenzyl alcohol (1.0 mmol), N-phenylglycine (0.0076 g, 0.05 mmol), CuBr2 (0.0112 g, 0.05 mmol), Na2CO3 (0.1060 g, 1.0 mmol), TEMPO (0.0078 g, 0.05 mmol), H2O (3.0 mL) were added to a 100 mL Schlenk tube, which was vigorously stirred in air under reflux for 0.5 h. After the reaction, the product was extracted with CH2Cl2 (3 × 2.0 mL). The combined organic phase was washed with H2O (3.0 mL) and dried over anhydrous MgSO4. After concentration under vacuum, the residue was purified by column chromatography to afford p-methylbenzaldehyde.Isolated yield: 0.1080 g (90%). 1H NMR (500 MHz, CDCl3): δ = 2.38(s, 3 H), 7.27 (d, J = 4.3 Hz, 2 H), 7.73 (d, J = 4.0 Hz, 2 H), 9.91 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 21.5, 129.4, 129.5, 134.0, 145.2, 191.6.
  • 20 General Procedures for Copper-Catalyzed Secondary Alcohol Oxidation under Reflux in Neat Water (1-Phenethyl Alcohol)A mixture of 1-phenethyl alcohol (1.0 mmol), N-(phenyl)phenylalanine (0.0241 g, 0.1 mmol), CuBr2 (0.0223 g, 0.1 mmol), NaOAc (0.1640 g, 2.0 mmol), TEMPO (0.0156 g, 0.1 mmol), and H2O (3.0 mL) were placed into a 100 mL Schlenk tube, which was vigorously stirred in air under reflux for 12 h. After the reaction, the product was extracted with CH2Cl2 (3 × 2.0 mL). The combined organic phase was washed with H2O (3.0 mL) and dried over anhydrous MgSO4. After concentration under vacuum, the residue was purified by column chromatography to afford acetophenone.Isolated yield: 0.1080 g (90%). 1H NMR (500 MHz, CDCl3): δ = 2.52 (s, 3 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.51 (t, J = 7.0 Hz, 1 H), 7.91 (d, J = 4.3 Hz, 2 H).13C NMR (125 MHz, CDCl3): δ = 26.5, 128.2, 128.5, 133.0, 137.1, 198.1.