Synlett 2015; 26(05): 688-694
DOI: 10.1055/s-0034-1379940
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Arylsulfonylation of Activated Alkenes

Liangliang Shi
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Hui Wang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Haijun Yang
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Hua Fu*
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 29 October 2014

Accepted after revision: 24 November 2014

Publication Date:
12 January 2015 (online)


Abstract

An efficient iron-catalyzed arylsulfonylation of activated alkenes has been developed. The protocol uses readily available N-acryl-N-substituted benzenesulfonamides and arylsulfinic acids as the starting materials, inexpensive iron salt as the catalyst, and environmentally friendly oxygen in air as the oxidant. α-Aryl-β-sulfonyl amides containing a quarternary stereocenter were obtained using N-acryl-N-alkyl benzenesulfonamides as the substrates.

Supporting Information

 
  • References and Notes

    • 1a McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 1b Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412
    • 1c Chemler SR. Org. Biomol. Chem. 2009; 7: 3009
    • 1d Jacques B, Muiñz K In Catalyzed Carbon-Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2011: 119-135
    • 2a Li Y, Song D, Dong VM. J. Am. Chem. Soc. 2008; 130: 2962
    • 2b Wang A, Jiang H, Chen H. J. Am. Chem. Soc. 2009; 131: 3846
    • 2c Wang W, Wang F, Shi M. Organometallics 2010; 29: 928
    • 2d Giglio BC, Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
    • 3a Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 1926
    • 3b Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5678
    • 3c Desai LV, Sanford MS. Angew. Chem. Int. Ed. 2007; 46: 5737
    • 3d Liu G, Stahl SS. J. Am. Chem. Soc. 2006; 128: 7179
    • 3e Alexanian EJ, Lee C, Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 7690
    • 3f Fuller PH, Kim J.-W, Chemler SR. J. Am. Chem. Soc. 2008; 130: 17638
    • 3g Muñiz K, Iglesias A, Fang Y. Chem. Commun. 2009; 5591
    • 3h Lovick HM, Michael FE. J. Am. Chem. Soc. 2010; 132: 1249
    • 3i de Haro T, Nevado C. Angew. Chem. Int. Ed. 2011; 50: 906
    • 4a Ingalls EL, Sibbald PA, Kaminsky W, Michael FE. J. Am. Chem. Soc. 2013; 135: 8854
    • 4b Zhao B, Peng X, Zhu Y, Ramirez TA, Cornwall RG, Shi Y. J. Am. Chem. Soc. 2011; 133: 20890
    • 4c Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
    • 4d Iglesias Á, Pérez EG, Muñiz K. Angew. Chem. Int. Ed. 2010; 49: 8109
    • 4e Zhao B, Du H, Cui S, Shi Y. J. Am. Chem. Soc. 2010; 132: 3523
    • 4f Zhao B, Peng X, Cui S, Shi Y. J. Am. Chem. Soc. 2010; 132: 11009
    • 4g Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J. Am. Chem. Soc. 2009; 131: 15945
    • 4h Muñiz K, Hövelmann CH, Streuff J. J. Am. Chem. Soc. 2008; 130: 763
    • 4i Muñiz K. J. Am. Chem. Soc. 2007; 129: 14542
    • 4j Streuff J, Hövelmann CH, Nieger M, Muñiz K. J. Am. Chem. Soc. 2005; 127: 14586
    • 4k Bar LJ, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
    • 5a Wu T, Yin G, Liu G. J. Am. Chem. Soc. 2009; 131: 16354
    • 5b Qiu S, Xu T, Zhou J, Guo Y, Liu G. J. Am. Chem. Soc. 2010; 132: 2856
    • 5c Wang Q, Zhong W, Wei X, Ning M, Meng X, Li Z. Org. Biomol. Chem. 2012; 10: 8566
    • 5d Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
    • 5e Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
    • 5f Kong W, Feige P, de Haro T, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 2469
    • 5g Wu T, Cheng J, Chen P, Liu G. Chem. Commun. 2013; 49: 8707
    • 6a Michael FE, Sibbald PA, Cochran BM. Org. Lett. 2008; 10: 793
    • 6b Lei A, Lu X, Liu G. Tetrahedron Lett. 2004; 45: 1785
    • 6c Muñz K, Höelmann CH, Campos-Gómez E, Barluenga J, González JM, Streuff J, Nieger M. Chem. Asian J. 2008; 3: 776
    • 6d Bovino MT, Chemler SR. Angew. Chem. Int. Ed. 2012; 51: 3923
    • 6e Yin G, Wu T, Liu G. Chem. Eur. J. 2012; 18: 451
    • 7a Zhang B, Studer A. Org. Lett. 2013; 15: 4548
    • 7b Lemieux RU, Ratcliffe RM. Can. J. Chem. 1979; 57: 1244
    • 7c Trahanovsky WS, Robbins MD. J. Am. Chem. Soc. 1971; 93: 5256

      For selected examples, see:
    • 8a Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
    • 8b Jiang X.-Y, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 14177
    • 8c Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
    • 8d Egami H, Kawamura S, Miyazaki A, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 7841
    • 8e He Y.-T, Li L.-H, Yang Y.-F, Wang Y.-Q, Luo J.-Y, Liu X.-Y, Liang Y.-M. Chem. Commun. 2013; 49: 5687
    • 8f Huang H.-T, Lacy TC, Błachut B, Ortiz GX, Wang Q. Org. Lett. 2013; 15: 1818
    • 8g Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 8h Feng C, Loh T.-P. Chem. Sci. 2012; 3: 3458
    • 8i Li Y, Studer A. Angew. Chem. Int. Ed. 2012; 51: 8221
    • 8j Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567

      For selected examples, see:
    • 9a Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
    • 9b Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 9c Zhou M.-B, Song R.-J, Ouyang X.-H, Liu Y, Wei W.-T, Deng G.-B, Li J.-H. Chem. Sci. 2013; 4: 2690
    • 9d Li Y.-M, Wei X.-H, Li XA, Yang S.-D. Chem. Commun. 2013; 49: 11701
    • 9e Wei H, Piou T, Dufour J, Neuville L, Zhu J. Org. Lett. 2011; 13: 2244
    • 9f Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
    • 9g Piou T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561
    • 9h Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 9i Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
    • 9j Zhang B, Daniliuc CG, Studer A. Org. Lett. 2014; 16: 250
    • 9k Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
    • 9l Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 9m Wei X.-H, Li Y.-M, Zhou A.-X, Yang T.-T, Yang S.-D. Org. Lett. 2013; 15: 4158
    • 9n Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 9o Tian Q, He P, Kuang C. Org. Biomol. Chem. 2014; 12: 6349

      For selected examples, see:
    • 10a Mu X, Wu T, Wang H.-y, Guo Y.-l, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 10b Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C. Chem. Eur. J. 2013; 19: 14039
    • 10c Dong X, Song R, Wang Q, Tang X.-Y, Shi M. Chem. Eur. J. 2013; 19: 16910
    • 10d Egami H, Shimizu R, Sodeoka M. J. Fluorine Chem. 2013; 152: 51
    • 10e Yang F, Klumpha P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 10f Lu Q, Liu C, Peng P, Liu Z, Fu L, Huang J, Lei A. Asian J. Org. Chem. 2014; 3: 273
    • 10g Fu W, Xu F, Fu Y, Zhu M, Yu J, Xu C, Zou D. J. Org. Chem. 2013; 78: 12202
    • 10h Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 1322
    • 10i Shi L, Yang X, Wang Y, Yang H, Fu H. Adv. Synth. Catal. 2014; 356: 1021
    • 10j Shi L, Wang Y, Yang H, Fu H. Org. Biomol. Chem. 2014; 12: 4070
    • 10k Wang F, Wang D, Mu X, Chen P, Liu G. J. Am. Chem. Soc. 2014; 136: 10202
    • 11a Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 11b Kong W, Casimiro M, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
    • 11c Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 12a Prasit P, Wang Z, Brideau C, Chan CC, Charleson S, Cromlish W, Ethier D, Evans JF, Ford-Hutchinson AW, Gauthier JY, Gordon R, Guay J, Gresser M, Kargman S, Kennedy B, Leblanc Y, Léger S, Mancini J, O’Neill GP, Ouellet M, Percival MD, Perrier H, Riendeau D, Rodger I, Tagari P, Thérien M, Vickers P, Wong E, Xu L.-J, Young RN, Zamboni R. Bioorg. Med. Chem. Lett. 1999; 9: 1773
    • 12b Ettari R, Nizi E, Di Francesco ME, Dude MA, Pradel G, Vicik R, Schirmeister T, Micale N, Grasso S, Zappalà M. J. Med. Chem. 2008; 51: 988
    • 12c Ladduwahetty T, Gilligan M, Humphries A, Merchant KJ, Fish R, McAlister G, Ivarsson M, Dominguez M, O’Connor D, MacLeod AM. Bioorg. Med. Chem. Lett. 2010; 20: 3708
    • 12d Colwell WT, Chan G, Brown VH, DeGraw JI, Peters JH, Morrison NE. J. Med. Chem. 1974; 17: 142
    • 12e Sharpe TR, Cherkofsky SC, Hewes WE, Smith DH, Gregory WA, Haber SB, Leadbetter MR, Whitney JG. J. Med. Chem. 1985; 28: 1188
    • 12f Schellhammer PF, Sharifi R, Block NL, Soloway MS, Venner PM, Patterson AL, Sarosdy MF, Vogelzang NJ, Schellenger JJ, Kolvenbag GJ. Urology 1997; 50: 330
  • 13 Langman M.-J, Jensen D.-M, Watson D.-J, Harper S.-E, Zhao P.-L, Quan H, Bolognese J.-A, Simon T.-J. J. Am. Med. Assoc. 1999; 282: 1929
  • 14 Bachovchin D, Zuhl A, Speers A, Wolfe M, Weerapana E, Brown S, Rosen H, Cravatt B. J. Med. Chem. 2011; 54: 5229
  • 15 Neamati N, Mazumder A, Zhao H, Sunder S, Burke TR. Jr, Schultz RJ, Pommier Y. Antimicrob. Agents Chemother. 1997; 41: 385
  • 16 Jones TR, Webber SE, Varney MD, Rami Reddy M, Lewis KK, Kathardekar V, Mazdiyasni H, Deal J, Nguyen D, Welsh KM, Webber S, Johnston A, Matthews DA, Smith WW, Janson CA, Bacquet RJ, Howland EF, Booth CL. J, Herrmann SM, Ward RW, White J, Bartlett CA, Morse CA. J. Med. Chem. 1997; 40: 677
    • 17a Artico M, Silvestri R, Massa S, Loi AG, Corrias S, Piras G, La Colla P. J. Med. Chem. 1996; 39: 522
    • 17b Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides DP, Anderson S. J. Med. Chem. 1993; 36: 1291
    • 17c McMahon JB, Gulakowski RJ, Weislow OS, Schultz RJ, Narayanan VL, Clanton DJ, Pedemonte R, Wassmundt FW, Buckheit RW. Jr, Decker WD. Antimicrob. Agents Chemother. 1993; 37: 754
    • 17d Li D, Zhan P, De Clercq E, Liu X. J. Med. Chem. 2012; 55: 3595
    • 18a Simpkins NS. Sulfones in Organic Synthesis. Pergamon Press; Oxford: 1993
    • 18b Procter DJ. J. Chem. Soc., Perkin Trans. 1 2000; 835
    • 19a Bolm C, Legros J, Paih JL, Zani L. Chem. Rev. 2004; 104: 6217
    • 19b Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 19c Correa A, Mancheño OG, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 19d Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2008; 10: 1863
    • 19e Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Synlett 2008; 2667
    • 19f Wang F, Liu H, Fu H, Jiang Y, Zhao Y. Adv. Synth. Catal. 2009; 351: 246
    • 19g Yang D, Fu H, Hu L, Jiang Y, Zhao Y. J. Comb. Chem. 2009; 11: 653
    • 19h Tian H, Zhu C, Yang H, Fu H. Chem. Commun. 2014; 50: 8875
  • 20 General Procedure for the Synthesis of α-aryl-β-Sulfonyl Amides 3a–q or Sulfonylated Oxindoles 4a–l A 25 mL Schlenk tube was charged with a magnetic stirrer and THF (2.5 mL). N-Acryl-N-aryl benzenesulfonamide (1, 0.25 mmol), arylsulfinic acid (2, 0.75 mmol; 0.4 mmol of 2 were added for the first time; after 12 h, 0.35 mmol of 2 were added for the second time), and FeSO4·7H2O (0.025 mmol, 7 mg) were added to the tube. The tube was sealed, and the mixture was stirred at 100 °C for 24 or 36 h in the presence of air. The resulting mixture was cooled to r.t., the solvent was removed by a rotary evaporator, and the residue was purified by column chromatography on silica gel using PE–EtOAc as the eluent to give the desired target product 3 or 4. Four representative examples are shown as follows: 2-Methyl-N,2-diphenyl-3-(phenylsulfonyl)propanamide (3a) Eluent: PE–EtOAc (3:1); yield 67 mg (71%); white solid; mp 134–137 °C. 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, 2 H, J = 7.3 Hz), 7.52 (t, 1 H, J = 7.8 Hz), 7.41–7.25 (m, 11 H), 7.09 (t, 1 H, J = 7.3 Hz), 6.91 (s, 1 H), 4.02 (q, 2 H), 2.15 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.8, 141.4, 139.6, 137.6, 133.4, 129.3, 129.2, 128.5, 127.8, 127.3, 124.9, 120.4, 64.3, 50.6, 22.9. ESI-MS: m/z = 380.2 [M + H]+, 402.2 [M + Na]+. 2-Methyl-3-(phenylsulfonyl)-2-(p-tolyl)-N-[4-(trifluoromethyl)phenyl]propanamide (3n) Eluent: PE–EtOAc (5:1); yield 83 mg (72%); white solid; mp 145–147 °C. 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, 2 H, J = 8.2 Hz), 7.53–7.46 (m, 5 H), 7.37 (t, 2 H, J = 7.3 Hz), 7.21 (s, 1 H), 7.04 (d, 2 H, J = 8.2 Hz), 3.97 (q, 2 H), 2.29 (s, 3 H), 2.11 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.3, 141.1, 140.7 138.4, 136.1, 133.3, 130.0, 129.9, 127.7, 126.9, 126.3 (q, J = 23.8 Hz), 124.1 (q, J = 273.2 Hz), 119.9, 64.3, 50.3, 22.7, 21.2. 19F NMR (376 MHz, CDCl3): δ = –63.0. ESI-MS: m/z = 462.2 [M + H]+. 1-Isopropyl-3-methyl-3-[(phenylsulfonyl)methyl]indolin-2-one (4c) Eluent: PE–EtOAc (3:1); yield 43 mg (50%); light yellow solid; mp 181–184 °C. 1H NMR (400 MHz, CDCl3): δ = 7.52–7.49 (m, 3 H), 7.36 (t, 2 H, J = 6.9 Hz), 7.21 (t, 1 H, J = 7.8 Hz), 7.04 (d, 1 H, J = 8.2 Hz), 6.91 (d, 1 H, J = 7.3 Hz), 6.77 (t, 1 H, J = 7.8 Hz), 4.73–4.63 (m, 1 H), 3.76 (q, 2 H), 1.55 (d, 3 H, J = 6.4 Hz), 1.51 (d, 3 H, J = 6.4 Hz), 1.36 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 177.6, 142.3, 140.7, 133.4, 130.2, 129.2, 128.5, 127.8, 124.2, 122.1, 110.4, 62.2, 45.6, 44.3, 25.8, 19.6, 19.1. ESI-MS: m/z = 344.1 [M + H]+. 1,3,5-Trimethyl-3-({[4-(trifluoromethyl)phenyl]sulfonyl}methyl)indolin-2-one (4i) Eluent: PE–EtOAc (3:1); yield 66 mg (66%); light yellow solid; mp 137–139 °C. 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, 2 H, J = 8.6 Hz), 7.49 (d, 2 H, J = 8.3 Hz), 7.05 (d, 1 H, J = 7.9 Hz), 6.75 (d, 1 H, J = 7.9 Hz), 6.53 (s, 1 H), 3.84 (q, 2 H), 3.19 (s, 3 H), 2.06 (s, 3 H), 1.35 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 177.5, 143.5, 141.4, 132.2, 129.4, 129.1, 128.6, 125.9 (q, J = 3.6 Hz), 124.7, 123.3 (q, J = 273.1 Hz), 108.5, 62.2, 45.7, 26.8, 25.6, 20.8. 19F NMR (376 MHz, CDCl3): δ = –63.9. ESI-MS: m/z = 398.2 [M + H]+.
    • 21a Lu Q, Zhang J, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 21b Shen T, Yuan Y, Song S, Jiao N. Chem. Commun. 2014; 50: 4115
    • 21c Wei W, Wen J, Yang D, Du J, You J, Wang H. Green Chem. 2014; 16: 2988