Synlett 2015; 26(06): 771-778
DOI: 10.1055/s-0034-1379935
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Acylated Indoles through Palladium-Catalyzed Dehydrogenative Coupling of N-Pyrimidine-Protected Indoles with Aldehydes and Ethyl Glyoxylate

Wenduo Wang
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: ztanze@gmail.com
,
Jidan Liu
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: ztanze@gmail.com
,
Qingwen Gui
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: ztanze@gmail.com
,
Ze Tan*
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: ztanze@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 09 October 2014

Accepted after revision: 24 November 2014

Publication Date:
09 February 2015 (online)


Abstract

C2-Acylated indoles have been synthesized in good yields through palladium-catalyzed dehydrogenative coupling of N-pyrimidine-protected indoles using aldehydes as the source of acyl reagent and tert-butyl hydroperoxide as the oxidant. 2-Indole carboxylates can be synthesized when aldehydes are substituted by ethyl glyoxylate.

Supporting Information

 
  • References and Notes

    • 1a Nicolaou I, Demopoulos VJ. J. Med. Chem. 2003; 46: 417
    • 1b Barreca ML, Ferro S, Rao A, Luca LD, Zappala M, Monforte AM, Debyser Z, Witvrouw M, Chimirri A. J. Med. Chem. 2005; 48: 7084
    • 1c Wu Y.-S, Coumar MS, Chang J.-Y, Sun H.-Y, Kuo F.-M, Kuo C.-C, Chen Y.-J, Chang C.-Y, Hsiao C.-L, Liou J.-P. J. Med. Chem. 2009; 52: 4941
    • 1d Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1e Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1f Smith PA. J. Am. Chem. Soc. 1948; 70: 320
    • 1g Horning EC, Stromberg VL, Lloyd HA. J. Am. Chem. Soc. 1952; 74: 5153
    • 1h Siddiqui MA, Snieckus V. Tetrahedron Lett. 1988; 29: 5463
    • 1i Banwell MG, Lupton DW, Ma X, Renner J, Sydnes MO. Org. Lett. 2004; 6: 2741
    • 1j Bernini R, Cacchi S, Fabrizi G, Sferrazza A. Synthesis 2008; 729
    • 1k Dubost E, Magnelli R, Cailly T, Fabis F. Tetrahedron 2010; 66: 5008
    • 2a Thomas CJ, Wolak MA, Birge RR, Lees WJ. J. Org. Chem. 2001; 66: 1914
    • 2b Coldham I, Dobson BC, Fletcher SR, Franklin AI. Eur. J. Org. Chem. 2007; 2676
    • 3a Olah GA. Friedel–Crafts Chemistry . Wiley/Interscience; New York: 1973
    • 3b Ketcha DM, Gribble GW. J. Org. Chem. 1985; 50: 5451
    • 3c Wenkert E, Moeller PD. R, Piettre SR, McPhail AT. J. Org. Chem. 1988; 53: 3170
    • 3d Okauchi T, Itonaga M, Minami T, Owa T, Kitoh K, Yoshino H. Org. Lett. 2000; 2: 1485
    • 3e Ottoni O, Neder AV. F, Dias AK. B, Cruz RP. A, Aquino LB. Org. Lett. 2001; 3: 1005
    • 3f Katritzky AR, Suzuki K, Singh SK, He H.-Y. J. Org. Chem. 2003; 68: 5720
    • 4a Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1970
    • 4b Powers JC. J. Org. Chem. 1965; 30: 2534
    • 4c Seemann F, Wiskott E, Niklaus P, Troxler F. Helv. Chim. Acta 1971; 54: 2411
  • 5 Bergman J, Venemalm L. Tetrahedron Lett. 1987; 28: 3741
    • 6a Wu W, Su W. J. Am. Chem. Soc. 2011; 133: 11924
    • 6b Li L.-T, Huang J, Li H.-Y, Wen L.-J, Wang P, Wang B. Chem. Commun. 2012; 48: 5187
    • 6c Chen J, Liu B, Liu D, Liu S, Cheng J. Adv. Synth. Catal. 2012; 354: 2438
    • 7a Eyley SC, Giles RG, Heaney H. Tetrahedron Lett. 1985; 26: 4649
    • 7b Faul MM, Winneroski LL. Tetrahedron Lett. 1997; 38: 4749
  • 8 Yu L, Li P, Wang L. Chem. Commun. 2013; 49: 2368
    • 9a Katritsky AR, Akutagawa K. Tetrahedron Lett. 1985; 26: 5935
    • 9b Mahboobi S, Sellmer A, Hocher H, Garhammer C, Pongratz H, Maier TT, Ciossek T, Beckers T. J. Med. Chem. 2007; 50: 4405
    • 9c Brancale A, Silvestri R. Med. Res. Rev. 2007; 27: 209
    • 9d Zhou B, Yang Y, Li Y. Chem. Commun. 2012; 48: 5163
    • 9e Pan C, Jin H, Liu X, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 2933
    • 9f Zhou W, Li P, Zhang Y, Wang L. Adv. Synth. Catal. 2013; 355: 2343
    • 10a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 10b Li C, Wang L, Li P, Zhou W. Chem. Eur. J. 2011; 17: 10208
    • 10c Chan C.-W, Zhou Z, Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
    • 10d Szabo F, Daru J, Simko D, Nagy TZ, Stirling A, Novak Z. Adv. Synth. Catal. 2013; 355: 685
    • 10e Zhang Q, Li C, Yang F, Li J, Wu Y. Tetrahedron 2013; 69: 320
    • 11a Basle O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 11b Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 11c Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
    • 11d Xiao F, Shuai Q, Zhao F, Basle Q, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
    • 11e Correia CA, Yang L, Li C.-J. Org. Lett. 2011; 13: 4581
    • 11f Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898
    • 12a Guin S, Rout KS, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5295
    • 12b Yin Z, Sun P. J. Org. Chem. 2012; 77: 11339
  • 13 Jiang T.-S, Wang G.-W. Org. Lett. 2013; 15: 788
    • 14a D’Angelo ND, Peterson JJ, Booker SK, Fellows I, Dominguez C, Hungate R, Reidera PJ, Kima T.-S. Tetrahedron Lett. 2006; 47: 5045
    • 14b Babu SG, Karvembu R. Tetrahedron Lett. 2013; 54: 1677
    • 15a Liu Y, Bai Y, Zhang J, Li Y, Jiao J, Qi X. Eur. J. Org. Chem. 2007; 6084
    • 15b Delvos LB, Begouin J.-M, Gosmini C. Synlett 2011; 2325
    • 15c Heo Y, Hyun D, Kumar MR, Jung HM, Lee S. Tetrahedron Lett. 2012; 53: 6657
    • 16a Gu S, Chen C, Chen W. J. Org. Chem. 2009; 74: 7203
    • 16b Kakiuchi F, Kochi T, Mutsutani H, Kobayashi N, Urano S, Sato M, Nishiyama S, Tanabe T. J. Am. Chem. Soc. 2009; 131: 11310
    • 16c Song B, Zheng X, Mo J, Xu B. Adv. Synth. Catal. 2010; 352: 329
    • 16d Zheng X, Song B, Li G, Liu B, Deng H, Xu B. Tetrahedron Lett. 2010; 51: 6641
    • 16e Xu S, Huang X, Hong X, Xu B. Org. Lett. 2012; 14: 4614
    • 16f Zhang L, Xue X, Xu C, Pan Y, Zhang G, Xu L, Li H, Shi Z. ChemCatChem 2014; 6: 3069
    • 16g Shi J, Zhao G, Wang X, Xu HE, Yi W. Org. Biomol. Chem. 2014; 12: 6831
    • 16h Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 16i Gong B, Shi J, Wang X, Yan Y, Li Q, Meng Y, Xu HE, Yi W. Adv. Synth. Catal. 2014; 356: 137
    • 16j Punji B, Song W, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
    • 16k Du J, Zhou B, Yang Y, Li Y. Chem. Asian J. 2013; 8: 1386
  • 17 General Procedure: To a 25-mL sealed tube were added indole (0.3 mmol), aldehyde (0.45 mmol), Pd(OAc)2 (6.72 mg, 10 mmol%), anhydrous TBHP (ca. 5 M in decane, 4 equiv), and EtOAc (2.0 mL). The tube was capped and stirred under N2 at 125 °C for 24 h. The reaction mixture was cooled to room temperature and diluted with CH2Cl2, filtered through a short pad of Celite, and washed with brine and CH2Cl2. The combined organic extracts were dried over Na2SO4, concentrated in vacuo, and the resulting residue was purified by silica gel column chromatography to afford the desired product. [3-Methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl](phenyl)methanone (3as): Yield: 82%; white solid; mp 153–154 °C. 1H NMR (400 MHz, CDCl3): δ = 8.63 (d, J = 8.0 Hz, 1 H), 8.44 (d, J = 4.0 Hz, 2 H), 7.77 (d, J = 8.0 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 1 H), 7.48–7.40 (m, 2 H), 7.32 (q, J = 8.0 Hz, 3 H), 6.84 (t, J = 4.0 Hz, 1 H), 2.37 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 189.4, 157.5, 157.0, 139.2, 136.4, 133.2, 132.2, 130.2, 128.5, 128.3, 126.1, 122.5, 121.7, 120.1, 116.1, 115.2, 9.3; HRMS: m/z [M]+ calcd for C20H15N3O: 313.1207; found: 313.1210. [7-Methyl-1-(pyrimidin-2-yl)-1H-indol-2-yl](phenyl)methanone (3at): Yield: 80%; yellow solid; mp 36–37 °C. 1H NMR (400 MHz, CDCl3): δ = 8.85 (d, J = 4.0 Hz, 2 H), 7.92 (d, J = 8.0 Hz, 2 H), 7.60–7.55 (m, 2 H), 7.48–7.45 (m, 2 H), 7.39 (t, J = 4.0 Hz, 1 H), 7.20 (s, 1 H), 7.13–7.11 (m, 2 H), 1.96 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 187.0, 159.7, 158.1, 138.3, 138.2, 136.0, 132.4, 129.6, 129.2, 128.2, 127.2, 122.4, 121.9, 121.1, 120.1, 116.4, 19.3. HRMS: m/z [M]+ calcd for C20H15N3O: 313.1207; found: 313.1210. (4-Methoxyphenyl)[1-(pyrimidin-2-yl)-1H-indol-2-yl]methanone (3au): Yield: 76%; white solid; mp 39–40 °C. 1H NMR (400 MHz, CDCl3): δ = 8.61 (d, J = 4.0 Hz, 2 H), 8.39 (d, J = 8.0 Hz, 1 H), 7.97 (d, J = 8.0 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 1 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.27 (t, J = 8.0 Hz, 1 H), 7.07 (s, 1 H), 7.02 (t, J = 4.0 Hz, 1 H), 6.91 (d, J = 8.0 Hz, 2 H), 3.83 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 186.4, 163.3, 157.9, 157.2, 138.0, 137.2, 131.8, 130.7, 127.9, 126.1, 122.6, 122.2, 117.3, 114.5, 114.1, 113.5, 55.4; HRMS: m/z [M]+ calcd for C20H15N3O2: 329.1152; found: 329.1159. N-{4-[1-(Pyrimidin-2-yl)-1H-indole-2-carbonyl]phenyl}acetamide (3av): Yield: 67%; yellow solid; mp 138–139 °C. 1H NMR (400 MHz, CDCl3): δ = 9.11 (s, 1 H), 8.56 (d, J = 4.0 Hz, 2 H), 8.37 (d, J = 8.0 Hz, 1 H), 7.89 (d, J = 8.0 Hz, 2 H), 7.68–7.61 (m, 3 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.26 (t, J = 8.0 Hz, 1 H), 7.07 (s, 1 H), 6.99 (t, J = 4.0 Hz, 1 H), 2.09 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 186.8, 169.4, 157.8, 157.0, 142.9, 138.0, 136.9, 132.7, 130.7, 127.8, 126.4, 122.7, 122.3, 118.7, 117.3, 115.1, 114.1, 24.28; HRMS: m/z [M]+ calcd for C21H16N4O2: 356.1273; found: 356.1268.
  • 18 Samanta S, Adak L, Jana R, Mostafa G, Tuononen HM, Ranu BC, Goswami S. Inorg. Chem. 2008; 47: 11062
  • 19 Wang S, Yang Z, Liu J, Xie K, Wang A, Chen X, Tan Z. Chem. Commun. 2012; 48: 9924
  • 20 Ackermann L, Lygin AV. Org. Lett. 2011; 13: 3332
  • 21 Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 2010
    • 22a Deprez NR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 11234
    • 22b Racowski JM, Dick AR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 10974
    • 23a Powers DC, Ritter T. Nat. Chem. 2009; 1: 302
    • 23b Powers DC, Geibel MA. L, Klein JE. M. N, Ritter T. J. Am. Chem. Soc. 2009; 131: 1705