Synlett 2015; 26(01): 6-30
DOI: 10.1055/s-0034-1379361
account
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Substituted Iptycenes

Ying-Xian Ma
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China   Fax: +86(10)62554449   Email: cchen@iccas.ac.cn
,
Zheng Meng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China   Fax: +86(10)62554449   Email: cchen@iccas.ac.cn
,
Chuan-Feng Chen*
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China   Fax: +86(10)62554449   Email: cchen@iccas.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 30 August 2014

Accepted after revision: 26 September 2014

Publication Date:
02 December 2014 (online)


Abstract

Iptycenes are a class of aromatic compounds that contain several arene units fused to a bicyclo[2.2.2]octatriene bridgehead system. This unique, rigid, three-dimensional molecular structure provides several open electron-rich cavities with an abundance of reactive positions, and makes them useful for a wide range of applications. There is no doubt that the synthesis and reactions of iptycene derivatives with different functional groups form the fundamental basis of iptycene development. In this account, the synthesis of substituted iptycenes is described. In particular, the different synthetic strategies toward substituted triptycenes and pentiptycenes are the main focus.

1 Introduction

2 Synthesis of Substituted Triptycenes

2.1 Direct Diels–Alder Addition Reactions

2.2 Selective Substitution of the Triptycene Skeleton

2.2.1 Acetylation

2.2.2 Nitration

2.2.3 Halogenation

3 Synthesis of Substituted Pentiptycenes

4 Synthesis of Other Substituted Iptycenes

5 Conclusion and Outlook

 
  • References

  • 1 Bartlett PD, Ryan MJ, Cohen SG. J. Am. Chem. Soc. 1942; 64: 2649
    • 2a Swager TM. Acc. Chem. Res. 2008; 41: 1181
    • 2b Yang JS, Yan JL. Chem. Commun. 2008; 1501
    • 2c Chong JH, MacLachlan MJ. Chem. Soc. Rev. 2009; 38: 3301
    • 2d Chen C.-F, Han T, Jiang Y. Chin. Sci. Bull. 2007; 52: 1349
    • 2e Chen C.-F. Chem. Commun. 2011; 47: 1674
    • 2f Han Y, Meng Z, Ma Y.-X, Chen C.-F. Acc. Chem. Res. 2014; 47: 2026
  • 3 Hart H, Bashirhashemi A, Luo J, Meador MA. Tetrahedron 1986; 42: 1641
    • 4a Kelly TR, De Silva H, Silva RA. Nature 1999; 401: 150
    • 4b Chen Y.-C, Sun W.-T, Lu H.-F, Chao I, Huang G.-J, Lin Y.-C, Huang S.-L, Huang H.-H, Lin Y.-D, Yang J.-S. Chem. Eur. J. 2011; 17: 1193
    • 4c Yang C.-H, Prabhakar C, Huang S.-L, Lin Y.-C, Tan W.-S, Misra NC, Sun W.-T, Yang J.-S. Org. Lett. 2011; 13: 5632
    • 4d Sun W.-T, Huang S.-L, Yao H.-H, Chen I.-C, Lin Y.-C, Yang J.-S. Org. Lett. 2012; 14: 4154
    • 4e Meng Z, Xiang J, Chen C.-F. Chem. Sci. 2013; 5: 1520
    • 4f Ma Y.-X, Meng Z, Chen C.-F. Org. Lett. 2014; 16: 1860
    • 4g Jiang Y, Guo J.-B, Chen C.-F. Org. Lett. 2010; 12: 4248
    • 4h Jiang Y, Guo J.-B, Chen C.-F. Chem. Commun. 2010; 46: 5536
    • 5a Ma Y.-X, Han Y, Cao J, Chen C.-F. Org. Biomol. Chem. 2013; 11: 8183
    • 5b Han Y, Cao J, Li P.-F, Zong Q.-S, Zhao J.-M, Guo J.-B, Xiang J.-F, Chen C.-F. J. Org. Chem. 2013; 78: 3235
    • 5c Zhu X.-Z, Chen C.-F. J. Am. Chem. Soc. 2005; 127: 13158
    • 5d Zhang C, Chen C.-F. J. Org. Chem. 2007; 72: 9339
    • 5e Cao J, Jiang Y, Zhao J.-M, Chen C.-F. Chem. Commun. 2009; 1987
    • 5f Zhao J.-M, Zong Q.-S, Han T, Xiang J.-F, Chen C.-F. J. Org. Chem. 2008; 73: 6800
    • 5g Han Y, Jiang Y, Chen C.-F. Chin. Chem. Lett. 2013; 24: 475
    • 6a Long TM, Swager TM. Adv. Mater. 2001; 13: 601
    • 6b Zhu Z.-G, Swager TM. J. Am. Chem. Soc. 2002; 124: 9670
    • 6c Ohira A, Swager TM. Macromolecules 2007; 40: 19
    • 6d Ghanem BS, Msayib KJ, McKeown NB, Harris KD. M, Pan Z, Budd PM, Butler A, Selbie J, Book D, Walton A. Chem. Commun. 2007; 67
    • 6e Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 1516
    • 6f Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 5126
    • 6g Kohl B, Rominger F, Mastalerz M. Org. Lett. 2014; 16: 704
    • 6h Schneider MW, Hauswald HJ. S, Stoll R, Mastalerz M. Chem. Commun. 2012; 48: 9861
    • 6i Schneider MW, Oppel IM, Griffin A, Mastalerz M. Angew. Chem. Int. Ed. 2013; 52: 3611
    • 6j Mastalerz M, Schneider MW, Oppel IM, Presly O. Angew. Chem. Int. Ed. 2011; 50: 1046
    • 6k Mastalerz M, Oppel IM. Angew. Chem. Int. Ed. 2012; 51: 5252
    • 6l Carta M, Croad M, Malpass-Evans R, Jansen JC, Bernardo P, Clarizia G, Friess K, Lanč M, McKeown NB. Adv. Mater. 2014; 26: 3526
    • 6m Ghanem BS, Hashem M, Harris KD. M, Msayib KJ, Xu M, Budd PM, Chaukura N, Book D, Tedds S, Walton A, McKeown NB. Macromolecules 2010; 43: 5287
    • 6n Kahveci Z, Islamoglu T, Shar GA, Ding R, El-Kaderi HM. CrystEngComm 2013; 15: 1524
    • 6o Rabbani MG, Reich TE, Kassab RM, Jackson KT, El-Kaderi HM. Chem. Commun. 2012; 48: 1141
    • 6p Taylor RG. D, Carta M, Bezzu CG, Walker J, Msayib KJ, Kariuki BM, McKeown NB. Org. Lett. 2014; 16: 1848
    • 6q Crane AK, Wong EY. L, MacLachlan MJ. CrystEngComm 2013; 15: 9811
    • 7a Yang J.-S, Swager TM. J. Am. Chem. Soc. 1998; 120: 5321
    • 7b Yang J.-S, Swager TM. J. Am. Chem. Soc. 1998; 120: 11864
    • 7c Yamaguchi S, Swager TM. J. Am. Chem. Soc. 2001; 123: 12087
    • 7d Amara JP, Swager TM. Macromolecules 2005; 38: 9091
    • 7e Hu S.-Z, Chen C.-F. Org. Biomol. Chem. 2011; 9: 5838
    • 7f Zhao J.-M, Zong Q.-S, Chen C.-F. J. Org. Chem. 2010; 75: 5092
    • 7g Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Adv. Mater. 2012; 24: 6049
    • 7h Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Chem. Commun. 2013; 49: 8398
    • 8a Gung BW, Emenike BU, Lewis M, Kirschbaum K. Chem. Eur. J. 2010; 16: 12357
    • 8b Mati IK, Cockroft SL. Chem. Soc. Rev. 2010; 39: 4195
    • 8c Xue M, Su Y.-S, Chen C.-F. Chem. Eur. J. 2010; 16: 8537
    • 8d Xue M, Chen C.-F. Chem. Commun. 2011; 47: 2318
    • 8e Su Y.-S, Liu J.-W, Jiang Y, Chen C.-F. Chem. Eur. J. 2011; 17: 2435
  • 9 Wittig G, Ludwig R. Angew. Chem. 1956; 68: 40
    • 10a Cadogan JI. G, Hibbert PG. Proc. Chem. Soc. 1964; 338
    • 10b Cadogan JI. G, Cook J, Harger MJ. P, Hibbert PG, Sharp JT. J. Chem. Soc. B 1971; 595
    • 11a Brewer JP. N, Eckhard IF, Heaney H, Marples BA. J. Chem. Soc. C 1968; 664
    • 11b Heaney H, Jablonski JM. J. Chem. Soc. C 1968; 1895
  • 12 Cadogan JI. G, Harger MJ. P, Sharp JT. J. Chem. Soc. B 1971; 602
  • 13 Zyryanov GV, Palacios MA, Anzenbacher P. Org. Lett. 2008; 10: 3681
  • 14 Mori I, Kadosaka T, Sakata Y, Misumi S. Bull. Chem. Soc. Jpn. 1971; 44: 1649
  • 15 Klanderman BH, Criswell TR. J. Org. Chem. 1969; 34: 3426
  • 16 Rogers ME, Averill BA. J. Org. Chem. 1986; 51: 3308
  • 17 Zhao J.-M, Lu H.-Y, Cao J, Jiang Y, Chen C.-F. Tetrahedron Lett. 2009; 50: 219
  • 18 Marks V, Nahmany M, Gottlieb HE, Biali SE. J. Org. Chem. 2002; 67: 7898
    • 19a Rybackova M, Belohradsky M, Holy P, Pohl R, Zavada J. Synthesis 2006; 2039
    • 19b Rybacek J, Rybackova M, Hoj M, Belohradsky M, Holy P, Kilsa K, Nielsen MB. Tetrahedron 2007; 63: 8840
    • 19c Rybackova M, Belohradsky M, Holy P, Pohl R, Dekoj V, Zavada J. Synthesis 2007; 1554
  • 20 Zonta C, De Lucchi O, Linden A, Lutz M. Molecules 2010; 15: 226
  • 21 Lu J, Zhang JJ, Shen X.-F, Ho DM, Pascal RA. J. Am. Chem. Soc. 2002; 124: 8035
  • 22 Friedman L, Logullo FM. J. Am. Chem. Soc. 1963; 85: 1549
  • 23 Paget CJ, Burger A. J. Org. Chem. 1965; 30: 1329
  • 24 Skvarchenko VR, Shalaev VK, Klabunovsk EI. Russ. Chem. Rev. 1974; 43: 951
  • 25 Li P.-F, Chen C.-F. J. Org. Chem. 2012; 77: 9250
  • 26 Zhang C, Chen C.-F. J. Org. Chem. 2007; 72: 3880
  • 27 Klanderm BH, Perkins WC. J. Org. Chem. 1969; 34: 630
  • 28 Shigeru T, Ryusei K. J. Am. Chem. Soc. 1973; 95: 4976
    • 29a Hartshorn SR, Moodie RB, Schofield K. J. Chem. Soc. B 1971; 1256
    • 29b Terabe S, Konaka R. J. Am. Chem. Soc. 1973; 95: 4976
    • 29c Rees JH. J. Chem. Soc., Perkin Trans. 2 1975; 945
    • 29d Streitwieser A, Ziegler GR, Mowery PC, Lewis A, Lawler RG. J. Am. Chem. Soc. 1968; 90: 1357
    • 30a Chong JH, MacLachlan MJ. Inorg. Chem. 2006; 45: 1442
    • 30b Chong JH, MacLachlan MJ. J. Org. Chem. 2007; 72: 8683
  • 31 Zhang C, Chen C.-F. J. Org. Chem. 2006; 71: 6626
  • 32 Dahms K, Senge MO. Tetrahedron Lett. 2008; 49: 5397
  • 33 Chen Z, Swager TM. Macromolecules 2008; 41: 6880
  • 34 Mastalerz M, Sieste S, Cenić M, Oppel IM. J. Org. Chem. 2011; 76: 6389
  • 35 Ballester M, Riera-Figueras J, Castaner J, Badfa C, Monso JM. J. Am. Chem. Soc. 1971; 93: 2215
  • 36 Ballester M, Molinet C, Castañer J. J. Am. Chem. Soc. 1960; 82: 4254
  • 37 Šket B, Zupan M. Bull. Chem. Soc. Jpn. 1981; 54: 279
  • 38 Hilton CL, Jamison CR, Zane HK, King BT. J. Org. Chem. 2008; 74: 405
  • 39 Skvarchenko VR, Getmanova EV, Skvarchenko VR. Zh. Org. Khim. 1976; 12: 191
  • 40 Hart H, Shamouilian S, Takehira Y. J. Org. Chem. 1981; 46: 4427
    • 41a Hart H. Pure Appl. Chem. 1993; 65: 27
    • 41b Wiehe A, Senge MO, Kurreck H. Lieb. Ann. 1997; 1951
    • 41c Williams VE, Swager TM. Macromolecules 2000; 33: 4069
    • 41d Spyroudis S, Xanthopoulou N. Tetrahedron Lett. 2003; 44: 3767
  • 42 Zhu X.-Z, Chen C.-F. J. Org. Chem. 2005; 70: 917
    • 43a Yang J.-S, Ko C.-W. J. Org. Chem. 2006; 71: 844
    • 43b Yang J.-S, Yan J.-L. Chem. Commun. 2008; 1501
    • 43c Yang J.-S, Yan J.-L, Jin Y.-X, Sun W.-T, Yang M.-C. Org. Lett. 2009; 11: 1429
  • 44 Cao J, Lu H.-Y, Chen C.-F. Tetrahedron 2009; 65: 8104
    • 45a Cao J, Lu H.-Y, You X.-J, Zheng Q.-Y, Chen C.-F. Org. Lett. 2009; 11: 4446
    • 45b Cao J, Lu H.-Y, Xiang J.-F, Chen C.-F. Chem. Commun. 2010; 46: 3586
    • 45c Han Y, Guo J.-B, Cao J, Chen C.-F. Tetrahedron 2013; 69: 4541
  • 46 Cao J, Zhu X.-Z, Chen C.-F. J. Org. Chem. 2010; 75: 7420
  • 47 Zhao D.-H, Swager TM. Org. Lett. 2005; 7: 4357