Synlett 2014; 25(18): 2558-2573
DOI: 10.1055/s-0034-1379164
account
© Georg Thieme Verlag Stuttgart · New York

Synthesis of gem-Difluoromethylenated Compounds Employing α,α-Difluoro-α-phenylsulfanyl-α-trimethylsilylmethane (PhSCF2SiMe3) as a gem-Difluoromethylene Building Block

Darunee Soorukram
Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Fax: +66(2)6445126   Email: manat.poh@mahidol.ac.th
,
Chutima Kuhakarn
Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Fax: +66(2)6445126   Email: manat.poh@mahidol.ac.th
,
Vichai Reutrakul
Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Fax: +66(2)6445126   Email: manat.poh@mahidol.ac.th
,
Manat Pohmakotr*
Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Fax: +66(2)6445126   Email: manat.poh@mahidol.ac.th
› Author Affiliations
Further Information

Publication History

Received: 28 July 2014

Accepted after revision: 26 August 2014

Publication Date:
15 October 2014 (online)


Abstract

α,α-Difluoro-α-phenylsulfanyl-α-trimethylsilylmethane (PhSCF2SiMe3) is a synthetically important fluorinating reagent. This account summarizes our work on the synthetic utility of α,α-difluoro-α-phenylsulfanyl-α-trimethylsilylmethane as a versatile gem-difluoromethylene building block for the preparation of a variety of gem-difluoromethylenated compounds.

1 Introduction

2 Fluoride-Catalyzed Nucleophilic Addition of PhSCF2SiMe3 to Carbonyl Compounds

2.1 Synthesis of gem-Difluoromethyl Aryl Ketones

2.2 Synthesis of gem-1,1-Difluoroalkenes

2.3 Synthesis of gem-Difluoromethylenated Cyclopentanol Derivatives

3 Fluoride-Catalyzed Nucleophilic Addition of PhSCF2SiMe3 to N-Substituted Phthalimides and Succinimide Derivatives

3.1 Synthesis of gem-Difluoromethylenated 1-Azabicyclic Compounds

3.2 Asymmetric Synthesis of gem-Difluoromethylenated Pyrrolizidines and Indolizidines

4 Fluoride-Catalyzed Nucleophilic Addition of PhSCF2SiMe3 to Anhydride Derivatives

5 Fluoride-Catalyzed Chemoselective Nucleophilic Addition of PhSCF2SiMe3 to Keto Esters

5.1 Synthesis of gem-Difluoromethylenated Spiro-γ-butyrolactones

5.2 Synthesis of gem-Difluoromethylenated Bicyclo[m.n.0]-alkan-1-ols and Their Ring-Expansion into gem-Difluoromethylenated Macrocyclic Lactones

6 Asymmetric Synthesis of 3,3-Difluoro-2-propanoylbicy­clo[3.3.0]octanes

7 Conclusions

 
  • References and Notes

    • 1a Enantiocontrolled Challenges and Biochemical Targets . Soloshonok VA. John Wiley & Sons; Chichester: 1999
    • 1b Selective Fluorination in Organic and Bioorganic Chemistry . Welch JT. American Chemical Society; Washington, DC: 1990
    • 1c Welch JT. Tetrahedron 1987; 43: 3123
    • 1d Resnati G. Tetrahedron 1993; 49: 9385
    • 1e Kitazume T, Yamazaki T. Top. Curr. Chem. 1997; 193: 91
    • 1f Percy JM. Top. Curr. Chem. 1997; 193: 131
    • 1g O‘Hagan D, Rzepa HS. Chem. Commun. 1997; 645
    • 1h Schlosser M. Angew. Chem. Int. Ed. 1998; 37: 1496
    • 1i Sutherland A, Willis CL. Nat. Prod. Rep. 2000; 17: 621
    • 1j Smart BE. J. Fluorine Chem. 2001; 109: 3
    • 1k Organofluorine Compounds, Chemistry and Applications. Hiyama T. Springer; New York: 2000
    • 1l Hiyama T, Shimizu M. Angew. Chem. Int. Ed. 2005; 44: 214

      For selected examples of difluoromethylation, see:
    • 2a Zemtsov AA, Kondratyev NS, Levin VV, Struchkova MI, Dilman AD. J. Org. Chem. 2014; 79: 818
    • 2b Salomon P, Zard SZ. Org. Lett. 2014; 16: 1482
    • 2c Min Q.-Q, Yin Z, Feng Z, Guo W.-H, Zhang X. J. Am. Chem. Soc. 2014; 136: 1230
    • 2d Ni C, Hu J. Synthesis 2014; 46: 842
    • 2e Munemori D, Narita K, Nokami T, Itoh T. Org. Lett. 2014; 16: 2638
    • 2f Hashimoto R, Iida T, Aikawa K, Ito S, Mikami K. Chem. Eur. J. 2014; 20: 2750
    • 2g Prakash GK. S, Krishnamoorthy S, Ganesh SK, Kulkarni A, Haiges R, Olah GA. Org. Lett. 2014; 16: 54
    • 2h Feng Z, Min Q.-Q, Xiao Y.-L, Zhang B, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 1669
    • 2i Lee GM, Harrison DJ, Korobkov I, Baker RT. Chem. Commun. 2014; 50: 1128
    • 2j Wang J.-Y, Su Y.-M, Yin F, Bao Y, Zhang X, Xu Y.-M, Wang X.-S. Chem. Commun. 2014; 50: 4108
    • 2k Li W, Zhu X, Mao H, Tang Z, Cheng Y, Zhu C. Chem. Commun. 2014; 50: 7521
    • 2l Ma G, Wan W, Hu Q, Jiang H, Wang J, Zhu S, Hao J. Chem. Commun. 2014; 50: 7527
    • 2m Hu M, He Z, Gao B, Li L, Ni C, Hu J. J. Am. Chem. Soc. 2013; 135: 17302
    • 2n Prakash GK. S, Ni C, Wang F, Zhang Z, Haiges R, Olah GA. Angew. Chem. Int. Ed. 2013; 52: 10835
    • 2o Mehta VP, Greaney MF. Org. Lett. 2013; 15: 5036
    • 2p Zhou Q, Ruffoni A, Gianatassio R, Fujiwara Y, Sella E, Shabat D, Barran PS. Angew. Chem. Int. Ed. 2013; 52: 3949
    • 2q Chia PW, Bello D, Slawin AM. Z, O‘Hagan D. Chem. Commun. 2013; 49: 2189
    • 2r Li L, Wang F, Ni C, Hu J. Angew. Chem. Int. Ed. 2013; 52: 12390
    • 2s Mykhailiuk PK, Starova V, Iurchenko V, Shishkina SV, Shishkin OV, Khilchevskyi O, Zaporozhets O. Tetrahedron 2013; 69: 4066
    • 2t Thomoson CS, Dolbier WR. Jr. J. Org. Chem. 2013; 78: 8904
    • 2u Sakamoto T, Horiguchi K, Saito K, Mori K, Akiyama T. Asian J. Org. Chem. 2013; 2: 943
    • 2v Orbegozo T, Burel F, Jubault P, Pannecoucke X. Tetrahedron 2013; 69: 4015
    • 2w Zhao Y, Huang W, Zheng J, Hu J. Org. Lett. 2011; 13: 5342
    • 2x Fourrière G, Hijfte NV, Lalot J, Dutech G, Fragnet B, Coadou G, Quirion J.-C, Leclerc E. Tetrahedron 2010; 66: 3963
    • 2y Yue X, Zhang X, Qing F.-L. Org. Lett. 2009; 11: 73
    • 2z Diab SA, Sene A, Pfund E, Lequeux T. Org. Lett. 2008; 10: 3895
    • 2aa Xu W, Dolbier WR. Jr, Salazar J. J. Org. Chem. 2008; 73: 3535
    • 2ab Jakowiecki J, Loska R, Makosza M. J. Org. Chem. 2008; 73: 5436
    • 2ac Hang X.-C, Chen Q.-Y, Xiao J.-C. Synlett 2008; 1989
    • 2ad Huguenot F, Billac A, Brigand T, Portella C. J. Org. Chem. 2008; 73: 2564
    • 2ae Beier P, Alexandrova AV, Zibinsky M, Prakash GK. S. Tetrahedron 2008; 64: 10977
    • 2af Ramachandran VP, Chatterjee A. Org. Lett. 2008; 10: 1195
    • 2ag Uneyama K. J. Fluorine Chem. 2008; 129: 550
    • 2ah Verniest G, Surmont R, Hende EV, Deweweire A, Deroose F, Thuring JW, De Kimpe N. J. Org. Chem. 2008; 73: 5458
    • 2ai Guo Y, Fujiwara K, Amii H, Uneyama K. J. Org. Chem. 2007; 72: 8523
    • 2aj Arimitsu S, Hammond GB. J. Org. Chem. 2007; 72: 8559
    • 2ak Fustero S, Fernández B, Sanz-Cervera JF, Mateu N, Mosulén S, Carbajo RJ, Pineda-Lucena A, Ramírez de Arellano C. J. Org. Chem. 2007; 72: 8716
    • 2al You Z.-W, Jiang Z.-X, Wang B.-L, Qing F.-L. J. Org. Chem. 2006; 71: 7261
    • 2am Fustero S, Sánchez-Roselló M, Rodrigo V, del Pozo C, Sanz-Cervera JF, Simón A. Org. Lett. 2006; 8: 4129
    • 2an Arimitsu S, Hammond GB. J. Org. Chem. 2006; 71: 8665
    • 2ao Zheng F, Zhang X.-H, Qiu X.-L, Zhang X, Qing F.-L. Org. Lett. 2006; 8: 6083
    • 2ap Wang R.-W, Qing F.-L. Org. Lett. 2005; 7: 2189
    • 2aq Crowley PJ, Fawcett J, Griffith GA, Moralee AC, Percy JM, Salafia V. Org. Biomol. Chem. 2005; 3: 3297
    • 2ar De Kimpe N, Van Brabandt W. Synlett 2006; 2039
    • 2as Qin Y.-Y, Yang Y.-Y, Qiu X.-L, Qing F.-L. Synthesis 2006; 1475
    • 2at Sato K, Tarui A, Matsuda S, Omote M, Ando A, Kumadaki I. Tetrahedron Lett. 2005; 46: 7679
    • 2au Niida A, Mizumoto M, Narumi T, Inokuchi E, Oishi S, Ohno H, Otaka A, Kitaura K, Fujii N. J. Org. Chem. 2006; 71: 4118
    • 2av You Z.-W, Zhang X, Qing F.-L. Synthesis 2006; 2535
    • 2aw Betterley NM, Surawatanawong P, Prabpai S, Kongsaeree P, Kuhakarn C, Pohmakotr M, Reutrakul V. Org. Lett. 2013; 15: 5666 ; and references cited therein
    • 2ax Belhomme M.-C, Poisson T, Pannecoucke X. Org. Lett. 2013; 15: 3428
    • 2ay Caillot G, Dufour J, Belhomme M.-C, Poisson T, Grimaud L, Pannecoucke X, Gillaizeau I. Chem. Commun. 2014; 50: 5887
    • 2az Belhomme M.-C, Poisson T, Pannecoucke X. J. Org. Chem. 2014; 79: 7205
    • 2ba Poisson T, Belhomme M.-C, Pannecoucke X. J. Org. Chem. 2012; 77: 9277
    • 2bb Surapanich N, Kuhakarn C, Pohmakotr M, Reutrakul V. Eur. J. Org. Chem. 2012; 5943
    • 2bc Qin Y.-Y, Qiu X.-L, Yang Y.-Y, Meng W.-D, Qing F.-L. J. Org. Chem. 2005; 70: 9040
    • 2bd Fourrière G, Lalot J, Van Hijfte N, Quirion J.-C, Leclerc E. Tetrahedron Lett. 2009; 50: 7048
    • 2be Fourrière G, Van Hijfte N, Lalot J, Dutech G, Fragnet B, Coadou G, Quirion J.-C, Leclerc E. Tetrahedron 2010; 66: 3963
    • 3a Suda M, Hino C. Tetrahedron Lett. 1981; 22: 1997
    • 3b Burton DJ, Wiemers DM. J. Fluorine Chem. 1981; 18: 573
    • 3c Rico I, Wakselman C. Tetrahedron Lett. 1981; 22: 323
    • 3d Rico I, Wakselman C. Tetrahedron 1981; 37: 4209
  • 4 Reutrakul V, Thongpaisanwong T, Tuchinda P, Kuhakarn C, Pohmakotr M. J. Org. Chem. 2004; 69: 6913
  • 5 Pohmakotr M, Ieawsuwan W, Tuchinda P, Kongsaeree P, Prabpai S, Reutrakul V. Org. Lett. 2004; 6: 4547
  • 6 Punirun T, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Eur. J. Org. Chem. 2014; 4162
  • 7 Physical properties of compound 1: stable colorless liquid, bp 86–87 °C (4 mmHg); soluble in most organic solvents, for example, hexane, THF, CH2Cl2 and DMF; can be handled in air and stored in a refrigerator for months without any appreciable decomposition. See also: Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. e-EROS Encyclopedia of Reagents for Organic Synthesis. 2011;
  • 8 Prakash GK. S, Hu J, Olah GA. J. Org. Chem. 2003; 68: 4457
  • 9 Toulgoat F, Langlois BR, Médebielle M, Sanchez J.-Y. J. Org. Chem. 2007; 72: 9046
    • 10a Prakash GK. S, Hu J, Wang Y, Olah GA. J. Fluorine Chem. 2005; 126: 529
    • 10b Mizuta S, Shibata N, Ogawa S, Fujimoto H, Nakamura S, Toru T. Chem. Commun. 2006; 2575
    • 10c Li Y, Hu J. Angew. Chem. Int. Ed. 2007; 46: 2489
    • 10d Prakash GK. S, Hu J. Acc. Chem. Res. 2007; 40: 921
    • 10e Li Y, Hu J. J. Fluorine Chem. 2008; 129: 382
    • 10f Ferry A, Billard T, Langlois BR, Bacque E. J. Org. Chem. 2008; 73: 9362
    • 10g Paillard E, Toulgoat F, Arvai R, Iojoiu C, Cointeaux L, Medebielle M, Alloin F, Langlois B, Sanchez J.-Y. J. Fluorine Chem. 2011; 132: 1213
    • 10h Kosobokov MD, Dilman AD, Struchkova MI, Belyakov PA, Hu J. J. Org. Chem. 2012; 77: 2080
    • 10i Huang W, Hi C, Zhao Y, Zhang W, Dilman AD, Hu J. Tetrahedron 2012; 68: 5137
    • 10j Levin VV, Elkin PK, Struchkova MI, Dilman AD. J. Fluorine Chem. 2013; 154: 43
    • 11a Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 11b Dilman AD, Levin VV. Eur. J. Org. Chem. 2011; 831
    • 11c Gawronski J, Wascinska N, Gajewy J. Chem. Rev. 2008; 108: 5227
    • 11d Liu M, Li J, Xiao X, Xie Y, Shi Y. Chem. Commun. 2013; 49: 1404
    • 11e Hoffman-Röder A, Seiler P, Diederich F. Org. Biomol. Chem. 2004; 2: 2267
    • 11f Mizuta S, Shibata N, Sato T, Fujimoto H, Nakamura S, Toru T. Synlett 2006; 267
    • 11g Kawai H, Tachi K, Tokunaga E, Shiro M, Shibata N. Org. Lett. 2010; 12: 5104
    • 11h Wu Y, Deng L. J. Am. Chem. Soc. 2012; 134: 14334
    • 11i Masusai C, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pohmakotr M. J. Fluorine Chem. 2013; 154: 37
    • 11j Masusai C, Soorukram D, Kuhakarn C, Tuchinda P, Pakawatchai C, Saithong S, Reutrakul V, Pohmakotr M. Org. Biomol. Chem. 2013; 11: 6650
  • 12 Pohmakotr M, Boonkitpattarakul K, Ieawsuwan W, Jarussophon S, Duangdee N, Tuchinda P, Reutrakul V. Tetrahedron 2006; 62: 5973

    • For the activation of trimethylsilyl (TMS) derivatives with Lewis bases, see for example:
    • 13a Noyori R, Yokoyama K, Sakata J, Kuwajima I, Nakamura E, Shimizu M. J. Am. Chem. Soc. 1977; 99: 1265
    • 13b Hosomi A, Araki Y, Sakurai H. J. Org. Chem. 1983; 48: 3122
    • 13c Takano S, Numata H, Ogasawara K. Heterocycles 1983; 20: 417
    • 13d Majetich G, Desmond R, Casares AM. Tetrahedron Lett. 1983; 24: 1913
    • 13e Dondoni A, Fantin G, Fogagnolo M, Medici A. Angew. Chem., Int. Ed. Engl. 1986; 25: 835
    • 13f Mukaiyama T, Fujisawa H, Nakagawa T. Helv. Chim. Acta 2002; 85: 4518
    • 13g Michida M, Toriumi T, Mukaiyama T. Tetrahedron Lett. 2009; 50: 3261
  • 14 Boonkitpattarakul K, Soorukram D, Tuchinda P, Reutrakul V, Pohmakotr M. J. Fluorine Chem. 2011; 132: 987
  • 15 Peewasan K, Kuhakarn C, Soorukram D, Tuchinda P, Reutrakul V, Pohmakotr M. J. Fluorine Chem. 2012; 135: 367
    • 16a Beckwith AL. J, Zimmermann J. J. Org. Chem. 1991; 56: 5791
    • 16b Beckwith AL. J, Schiesser CH. Tetrahedron 1985; 41: 3925
    • 16c Spellmeyer DC, Houk KN. J. Org. Chem. 1987; 52: 959
  • 17 Bootwicha T, Panichakul D, Kuhakarn C, Prabpai S, Kongsaeree P, Tuchinda P, Reutrakul V, Pohmakotr M. J. Org. Chem. 2009; 74: 3798
  • 18 Thaharn W, Bootwicha T, Soorukram D, Kuhakarn C, Prabpai S, Kongsaeree P, Tuchinda P, Reutrakul V, Pohmakotr M. J. Org. Chem. 2012; 77: 8465
  • 19 Pharikronburee V, Punirun T, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pohmakotr M. Org. Biomol. Chem. 2013; 11: 2022
  • 20 Pohmakotr M, Panichakul D, Tuchinda P, Reutrakul V. Tetrahedron 2007; 63: 9429
  • 21 Chatupheeraphat A, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pakawatchai C, Saithong S, Pohmakotr P. Eur. J. Org. Chem. 2013; 6844
  • 22 Punirun T, Peewasan K, Kuhakarn C, Soorukram D, Tuchinda P, Reutrakul V, Kongsaeree P, Prabpai S, Pohmakotr M. Org. Lett. 2012; 14: 1820
  • 23 Thaharn W, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pohmakotr M. Angew. Chem. Int. Ed. 2014; 53: 2212