RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2015; 26(01): 40-44
DOI: 10.1055/s-0034-1379162
DOI: 10.1055/s-0034-1379162
cluster
Regio- and Stereocontrolled Nucleophilic Trifluoromethylthiolation of Morita–Baylis–Hillman Carbonates
Weitere Informationen
Publikationsverlauf
Received: 09. Juli 2014
Accepted after revision: 25. August 2014
Publikationsdatum:
15. Oktober 2014 (online)
Abstract
Reactions of Morita–Baylis–Hillman carbonates with metal-free sources of trifluoromethylthio anion have been studied. The combination of CF3SiMe3/S8/KF/DMF gave the primary allylic SCF3 products through apparent SN2′ reaction whereas the use of Zard’s reagent, CF3SCO2C18H37, allowed us to intercept the fleeting secondary allylic SCF3 product.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 1b Cahard D, Bizet V. Chem. Soc. Rev. 2014; 43: 135
- 2 Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J. Med. Chem. 1973; 16: 1207
-
3 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 4a Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
- 4b Landelle G, Panossian A, Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
- 5 Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
- 6a Guenther A, Mohrmann K.-H, Stubbe M, Ziemann H (Bayer AG) Eur. Patent DE3516630 A119861113, 1986
- 6b Giudicelli JF, Richer C, Berdeaux A. Br. J. Clin. Pharmacol. 1976; 3: 113
- 7 Jamin H, Hafez Mohamed A, Philip Reid T. (Rhone-Poulenc Agrochimie) Eur. Patent EP 511845 A119921104, 1992
- 8 Counts GW, Gregory D, Zeleznik D, Turck M. Antimicrob. Agents Chemother. 1977; 11: 708
- 9a Munavalli S, Rohrbaugh DK, Rossman DI, Berg FJ, Wagnef GW, Durst HD. Synth. Commun. 2000; 60: 2847
-
9b Ferry A, Billard T, Langlois BR, Bacqué E. J. Org. Chem. 2008; 73: 9362
- 9c Ferry A, Billard T, Langlois BR, Bacqué E. Angew. Chem. Int. Ed. 2009; 48: 8551
-
9d Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J. Am. Chem. Soc. 2013; 135: 8782
-
9e Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
- 9f Vinogradova EV, Müller P, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 3125
- 9g Alazet S, Zimmer L, Billard T. Chem. Eur. J. 2014; 20: 8589
- 10a Bootwicha T, Liu X, Pluta R, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2013; 52: 12856
- 10b Rueping M, Liu X, Bootwicha T, Pluta R, Merkens C. Chem. Commun. 2014; 50: 2508
- 10c Wang X, Yang T, Cheng X, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
- 10d Zhu X.-L, Xu J.-H, Cheng D.-J, Zhao L.-J, Liu X.-Y, Tan B. Org. Lett. 2014; 16: 2192
- 11a Man EH, Coffman DD, Muetterties EL. J. Am. Chem. Soc. 1959; 81: 3575
- 11b Harris JF. Jr. J. Org. Chem. 1967; 32: 2063
- 11c Emeléus HJ, MacDuffie DE. J. Chem. Soc. 1961; 2597
- 11d Hanack M, Massa FW. Tetrahedron Lett. 1981; 22: 557
- 11e Hanack M, Kuhnle A. Tetrahedron Lett. 1981; 22: 3047
- 11f Munavalli S, Wagner GW, Hashemi B, Rohrbaugh DK, Durst HD. Synth. Commun. 1997; 27: 2847
- 11g Kong D, Jiang Z, Xin S, Bai Z, Yuan Y, Weng Z. Tetrahedron 2013; 69: 6046
- 11h Lin Q, Chen L, Huang Y, Rong M, Yuan Y, Weng Z. Org. Biomol. Chem. 2014; 12: 5500
- 11i Chen C, Xu X.-H, Yang B, Qing F.-L. Org. Lett. 2014; 16: 3372
- 12a Tyrra W, Naumann D, Hoge B, Yagupolskii YL. J. Fluorine Chem. 2003; 119: 101
- 12b Kolomeitsev A, Médebielle M, Kirsch P, Lork E, Röschenthaler G.-V. J. Chem. Soc., Perkin Trans. 1 2000; 2183
- 13a Abdulla RF, Fuhr KH, Williams JC. J. Org. Chem. 1979; 44: 1349
- 13b Huang Y, He X, Lin X, Rong M, Weng Z. Org. Lett. 2014; 16: 3284
-
14 Li S.-G, Zard SZ. Org. Lett. 2013; 15: 5898
- 15 Kolomeitsev AA, Chabanenko KY, Röschenthaler G.-V, Yagupolskii YL. Synthesis 1994; 145
- 16a Hu M, Rong J, Miao W, Ni C, Han Y, Hu J. Org. Lett. 2014; 16: 2030
- 16b Wang X, Zhou Y, Ji G, Wu G, Li M, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 3093
- 16c Lefebvre Q, Fava E, Nikolaienko P, Rueping M. Chem. Commun. 2014; 50: 6617
- 17a Baumann M, Baxendale IR, Ley SV. Synlett 2008; 2111
- 17b Baumann M, Baxendale IR, Martin LJ, Ley SV. Tetrahedron 2009; 65: 6611
- 17c Farrington E, Franchini MC, Brown JM. Chem. Commun. 1998; 277
- 17d Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shira M, Shibata N. Angew. Chem. Int. Ed. 2014; 53: 817
- 18 Tavener SJ, Adams DJ, Clark JH. J. Fluorine Chem. 1999; 95: 171
- 19 Chen C, Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 12454
- 20a Das B, Chowdhury N, Damodar K, Banerjee J. Chem. Pharm. Bull. 2007; 55: 1274
- 20b Zemtsov AA, Levin VV, Dilman AD, Struchkova MI, Belyakov PA, Tartakovsky VA, Hu J. Eur. J. Org. Chem. 2010; 6779
- 21 General Procedure for the Preparation of Compounds 3: Caution! This reaction should be conducted with a gas pressure regulator and in a well-ventilated hood to avoid exposure to toxic bis(trifluoromethyl)sulfide and higher analogues. In an oven-dried tube, sulfur (19.2 mg, 0.6 mmol) and KF (58.1 mg, 1 mmol) in anhydrous DMF (2 mL) were stirred at r.t. under dry air for 30 min. Me3SiCF3 (71 mg, 0.5 mmol) was then added to the mixture followed by addition of the MBH carbonate (0.1 mmol) and DABCO (1.12 mg, 0.01 mmol). After 22 h, the reaction went to completion (monitored by 19F NMR analysis). The reaction was quenched with H2O and extracted with Et2O. The combined organic layers were dried over MgSO4 and concentrated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether–EtOAc, 40:1) to give the corresponding primary allylic SCF3 compound.
- 22 Shi M, Wang F.-J, Zhao M.-X, Wei Y. The Chemistry of the Morita–Baylis–Hillman Reaction. RSC Publishing; Cambridge: 2011
For Hg(SCF3)2, see:
For AgSCF3/CuSCF3, see:
For a similar observation, see: