Synthesis 2014; 46(24): 3374-3382
DOI: 10.1055/s-0034-1379110
paper
© Georg Thieme Verlag Stuttgart · New York

Manganese(III) Acetate Mediated Oxidative Free-Radical Reactions of 2-(Alkenylamino)-1,4-naphthoquinones with 1,3-Dicarbonyl Compounds

Yu-Lin Hsu
Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101, ROC   Fax: +886(6)2740552   Email: cpchuang@mail.ncku.edu.tw
,
Che-Ping Chuang*
Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101, ROC   Fax: +886(6)2740552   Email: cpchuang@mail.ncku.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 29 July 2014

Accepted: 19 August 2014

Publication Date:
24 September 2014 (online)


Abstract

The manganese(III)-mediated oxidative free-radical reactions of 2-(alkenylamino)-1,4-naphthoquinones are described. The free-radical reaction of 2-(allylamino)-1,4-naphthoquinone with 1,3-dicarbonyl compounds provides a novel method for the synthesis of benzo[f]indole-4,9-diones and benzo[g]quinoline-5,10-diones. The reaction shows high chemoselectivity, depending on the solvents and 1,3-dicarbonyl compounds used. With both 1,3-diones and β-keto esters, in acetic acid, the condensation products, benzo[f]indoles, were generated selectively; in acetonitrile, the [5+1]-cyclization products, benzo[g]quinolines and tetrahydrobenzo[g]quinolines, were produced in high chemoselectivity. With diethyl malonate, the [5+1]-cyclization product, the corresponding tetrahydrobenzo[g]quinoline, was produced exclusively. The free-radical reaction of a 2-(vinylamino)-1,4-naphthoquinone with 1,3-dicarbonyl compounds produced benzo[g]quinolines effectively.

Supporting Information

 
  • References

    • 1a Neumann WP. Synthesis 1987; 665
    • 1b Curran DP. Synthesis 1988; 417
    • 1c Curran DP. Synthesis 1988; 489
    • 1d Giese B, Kopping B, Gobel T, Dickhaut J, Thoma G, Kulicke KJ, Trach F. Org. React. 1996; 48: 301
    • 1e Bowman WR, Bridge CF, Brookes P. J. Chem. Soc., Perkin Trans. 1 2000; 1
    • 1f Zheng W. Tetrahedron 2001; 57: 7237
    • 1g Rowlands GJ. Tetrahedron 2009; 65: 8603
    • 1h Rowlands GJ. Tetrahedron 2010; 66: 1593
    • 2a Melikyan GG. Synthesis 1993; 833
    • 2b Iqbal J, Bhatia B, Nayyar NK. Chem. Rev. 1994; 94: 519
    • 2c Snider BB. Chem. Rev. 1996; 96: 339
    • 2d Nair V, Panicker SB, Nair LG, George TG, Augustine A. Synlett 2003; 156
    • 2e Nair V, Balagopal L, Rajan R, Mathew J. Acc. Chem. Res. 2004; 37: 21
    • 2f Pan X.-Q, Zou J.-P, Zhang W. Mol. Diversity 2009; 13: 421
    • 3a Oumar-Mahamat H, Moustrou C, Surzur J.-M, Berstrand MP. J. Org. Chem. 1989; 54: 5684
    • 3b Snider BB, Wan BY. F, Buckman BO, Foxman BM. J. Org. Chem. 1991; 56: 328
    • 4a Citterio A, Sebastiano R, Marion A. J. Org. Chem. 1991; 56: 5328
    • 4b Citterio A, Sebastiano R, Nicolini M. Tetrahedron 1993; 49: 7743
    • 4c Wu Y.-L, Chuang C.-P, Lin P.-Y. Tetrahedron 2000; 56: 6209
    • 4d Liao Y.-J, Wu Y.-L, Chuang C.-P. Tetrahedron 2003; 59: 3511
    • 5a Jiang M.-C, Chuang C.-P. J. Org. Chem. 2000; 65: 5409
    • 5b Wu Y.-L, Chuang C.-P, Lin P.-Y. Tetrahedron 2001; 57: 5543
    • 5c Tsai A.-I, Wu Y.-L, Chuang C.-P. Tetrahedron 2001; 57: 7829
    • 5d Tseng C.-C, Wu Y.-L, Chuang C.-P. Tetrahedron 2002; 58: 7625
    • 5e Tseng C.-M, Wu Y.-L, Chuang C.-P. Tetrahedron 2004; 60: 12249
    • 5f Chen H.-L, Lin C.-Y, Cheng Y.-C, Tsai A.-I, Chuang C.-P. Synthesis 2005; 977
    • 5g Lin C.-Y, Cheng Y.-C, Tsai A.-I, Chuang C.-P. Org. Biomol. Chem. 2006; 4: 1097
    • 5h Chuang C.-P, Tsai A.-I. Tetrahedron 2007; 63: 11911
    • 5i Murugesan S, Nadkarni DH, Velu SE. Tetrahedron Lett. 2009; 50: 3074
    • 5j Shanab K, Schirmer E, Knafl H, Wulz E, Holzer W, Spreitzer H, Schmidt P, Aicher B, Müller G, Günther E. Bioorg. Med. Chem. Lett. 2010; 20: 3950
    • 5k Nadkarni DH, Murugesan S, Velu SE. Tetrahedron 2013; 69: 4105
    • 6a Waterman PG, Muhammad I. Phytochemistry 1985; 24: 523
    • 6b Molinski TF. Chem. Rev. 1993; 93: 1825
    • 6c Lee H, Hong S.-S, Kim Y.-H. Bioorg. Med. Chem. Lett. 1996; 6: 933
    • 6d Soonthornchareonnon N, Suwanborirux K, Bavovada R, Patarapanich C, Cassady JM. J. Nat. Prod. 1999; 62: 1390
    • 6e Chaves MH, de A Santos L, Lago JH. G, Roque NF. J. Nat. Prod. 2001; 64: 240
    • 7a Potts KT, Bhattacharjee D, Walsh EB. J. Chem. Soc., Chem. Commun. 1984; 114
    • 7b Potts KT, Bhattacharjee D, Walsh EB. J. Org. Chem. 1986; 51: 2011
    • 7c Pérez JM, Vidal L, Grande MT, Menéndez JC, Avendaňo C. Tetrahedron 1994; 50: 7923
    • 7d Mekideche S, Désaubry L. Tetrahedron Lett. 2008; 49: 5268
    • 8a Chigr M, Fillion H, Rougny A. Tetrahedron Lett. 1988; 29: 5913
    • 8b Nebois P, Barret R, Fillion H. Tetrahedron Lett. 1990; 31: 2569
    • 8c Kitahara Y, Onikura H, Shibano Y, Watanabe S, Mikami Y, Kubo A. Tetrahedron 1997; 53: 6001
    • 8d Pautet F, Nebois P, Bouaziz Z, Fillion H. Heterocycles 2001; 54: 1095
    • 9a Jiang C, Xu M, Wang S, Wang H, Yao Z.-J. J. Org. Chem. 2010; 75: 4323
    • 9b Fei N, Hou Q, Wang S, Wang H, Yao Z.-J. Org. Biomol. Chem. 2010; 8: 4096
    • 9c Fei N, Yin H, Wang S, Wang H, Yao Z.-J. Org. Lett. 2011; 13: 4208
    • 10a Kolodina EA, Lebedeva NI, Shvartsberg MS. Russ. Chem. Bull. 2007; 56: 2466
    • 10b Shvartsberg MS, Kolodina EA. Mendeleev Commun. 2008; 18: 109
    • 10c Gandy MN, Piggott MJ. J. Nat. Prod. 2008; 71: 866
    • 10d Devi Bala B, Balamurugan K, Perumal S. Tetrahedron Lett. 2011; 52: 4562
    • 11a Giese B. Angew. Chem., Int. Ed. Engl. 1983; 22: 753
    • 11b Mignani S, Janousek Z, Merenyi R, Viehe HG, Riga J, Verbist J. Tetrahedron Lett. 1984; 25: 1571
    • 11c Ogura K, Yanagisawa A, Fujino T, Takahashi K. Tetrahedron Lett. 1988; 29: 5387
    • 11d Sibi MP, Zimmerman J. J. Am. Chem. Soc. 2006; 128: 13346
    • 12a Park S.-U, Chung S.-K, Newcomb M. J. Am. Chem. Soc. 1986; 108: 240
    • 12b Fang J.-M, Chang H.-T, Lin C.-C. J. Chem. Soc., Chem. Commun. 1988; 1385
    • 12c Ogura K, Sumitani N, Kayano A, Iguchi H, Fujita M. Chem. Lett. 1992; 1487
    • 12d Yang C.-C, Chang H.-T, Fang J.-M. J. Org. Chem. 1993; 58: 3100
    • 13a Nair V, Mathew J, Radhakrishnan KV. J. Chem. Soc., Perkin Trans. 1 1996; 1487
    • 13b Roy SC, Mandal PK. Tetrahedron 1996; 52: 2193
    • 13c Lee YR, Kim BS, Wang HC. Tetrahedron 1998; 54: 12215
    • 13d Bar G, Parson AF, Thomas CB. Tetrahedron Lett. 2000; 41: 7751
    • 13e Zhang Y, Raines AJ, Flowers II RA. Org. Lett. 2003; 5: 2363
    • 13f Çalişkan R, Pekel T, Watson WH, Balci M. Tetrahedron Lett. 2005; 46: 6227
    • 13g Çalişkan R, Ali MF, Şahin E, Watson WH, Balci M. J. Org. Chem. 2007; 72: 3353

      For other related lactone formation, see:
    • 14a Dombroski MA, Kates SA, Snider BB. J. Am. Chem. Soc. 1990; 112: 2759
    • 14b Snider BB, Merritt JE, Dombroski MA, Buckman BO. J. Org. Chem. 1991; 56: 5544
    • 14c Snider BB, McCarthy BA. J. Org. Chem. 1993; 58: 6217
    • 14d Hulcoop DG, Burton JW. Chem. Commun. 2005; 4687
    • 14e Powell LH, Docherty PH, Hulcoop DG, Kemmitt PD, Burton JW. Chem. Commun. 2008; 2559
    • 14f Logan AW. J, Parker JS, Hallside MS, Burton JW. Org. Lett. 2012; 14: 2940
  • 15 Crystal data for 5h: C18H15NO6, M = 341.31, T = 200(2) K, λ = 0.71073 Å, orthorhombic, space group P 21 21 21, a = 10.663(2) Å, b = 11.285(2) Å, c = 12.362(2) Å, V = 1487.5(5) Å3, Z = 4, Dc = 1.524 mg/m3, μ = 0.116 mm–1, F(000) = 712, crystal size 0.25 × 0.14 × 0.10 mm3, reflections collected 10366, independent reflections 2680 [R(int) = 0.0945], refinement method, full-matrix least-squares on F 2, goodness-of-fit on F 2 0.977, final R indices [I > 2σ(I)] R 1 = 0.0590, wR 2 = 0.1293, R indices (all data) R 1 = 0.1053, wR 2 = 0.1587, largest diff. peak and hole 0.313 and –0.473 e·Å–3. Crystallographic data for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 890239. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk.
    • 16a Chuang C.-P, Tsai A.-I. Tetrahedron 2007; 63: 9712
    • 16b Chuang C.-P, Tsai A.-I. Tetrahedron 2008; 64: 5098
    • 16c Lu P.-Y, Chen K.-P, Chuang C.-P. Tetrahedron 2009; 65: 7414
    • 16d Tsai P.-J, Kao C.-B, Chiow W.-R, Chuang C.-P. Synthesis 2014; 46: 175
    • 17a Cossy J, Bouzide A. J. Chem. Soc., Chem. Commun. 1993; 1218
    • 17b Cossy J, Bouzide A. Tetrahedron 1999; 55: 6483
    • 17c Cossy J, Bouzide A, Leblanc C. J. Org. Chem. 2000; 65: 7257
    • 17d Chuang C.-P, Wu Y.-L. Tetrahedron Lett. 2001; 42: 1717
    • 17e Zhang Y, Raines AJ, Flowers II RA. J. Org. Chem. 2004; 69: 6267
    • 17f Chuang C.-P, Wu Y.-L. Tetrahedron 2004; 60: 1841
    • 17g Tsai A.-I, Chuang C.-P. Tetrahedron 2006; 62: 2235