Synthesis 2014; 46(24): 3365-3373
DOI: 10.1055/s-0034-1379044
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Catalytic Enantioselective Synthesis of Functionalized Tetrahydroquinolines by Aza-Michael/Michael Cascade Reactions of N-Protected 2-Aminophenyl α,β-Unsaturated Esters with Nitroolefins

Ki-Tae Kang
Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, 443-760, Republic of Korea   Fax: +82(31)2531165   eMail: sgkim123@kyonggi.ac.kr
,
Sung-Gon Kim*
Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, 443-760, Republic of Korea   Fax: +82(31)2531165   eMail: sgkim123@kyonggi.ac.kr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 08. Juli 2014

Accepted after revision: 06. August 2014

Publikationsdatum:
10. September 2014 (online)


Abstract

A highly enantioselective synthesis of functionalized tetrahydroquinolines with useful biological properties has been developed by means of asymmetric organocatalytic aza-Michael/Michael cascade reactions of nitroolefins with N-protected 2-aminophenyl α,β-unsaturated esters in the presence of a chiral thiourea catalyst. The reaction gave the corresponding highly functionalized tetrahydroquinolines in good yields, excellent diastereoselectivities (>30:1 dr), and high enantioselectivities (≤99% ee).

Supporting Information

 
  • References


    • For reviews on tetrahydroquinolines, see:
    • 1a Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 1b Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 1c Mitchinson A, Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 17: 2862
    • 1d Kouznetsov V, Palma A, Ewert C, Varlamov A. J. Heterocycl. Chem. 1998; 35: 761
    • 1e Katritzky AR, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 2a Skerlj RT, Bridger GJ, Kaller A, McEachern EJ, Crawford JB, Zhou Y, Atsma B, Langille J, Nan S, Veale D, Wilson T, Harwig C, Hatse S, Princen K, De Clercq E, Schols D. J. Med. Chem. 2010; 53: 3376
    • 2b Ramesh E, Manian RD. R. S, Raghunathan R, Sainath S, Raghunathan M. Bioorg. Med. Chem. 2009; 17: 660
    • 2c Liou J.-P, Wu Z.-Y, Kuo C.-C, Chang C.-Y, Lu P.-Y, Chen C.-M, Hsieh H.-P, Chang J.-Y. J. Med. Chem. 2008; 51: 4351
    • 2d Urbina JM, Cortés JC. G, Palma A, López SN, Zacchino SA, Enriz RD, Ribas JC, Kouznetzov VV. Bioorg. Med. Chem. 2000; 8: 691

      For examples of syntheses of chiral tetrahydroquinolines, see:
    • 3a Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
    • 3b Mori K, Ehara K, Kurihara K, Akiyama T. J. Am. Chem. Soc. 2011; 133: 6166
    • 3c Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
    • 3d Xie M, Chen X, Zhu Y, Gao B, Lin L, Liu X, Feng X. Angew. Chem. Int. Ed. 2010; 49: 3799
    • 3e Xu H, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
    • 3f Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
    • 3g Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
    • 3h Fustero S, Moscardó J, Jiménez D, Pérez-Carrión MD, Sánche-Roselló M, del Pozo C. Chem. Eur. J. 2008; 14: 9868
    • 3i Guo Q.-S, Du D.-M, Xu J. Angew. Chem. Int. Ed. 2008; 47: 759
    • 4a Jia Z.-X, Luo Y.-C, Wang Y, Chen L, Xu P.-F, Wang B. Chem. Eur. J. 2012; 18: 12958
    • 4b Tan HR, Ng HF, Chang J, Wang J. Chem. Eur. J. 2012; 18: 3865
    • 4c Dagousset G, Zhu J.-P, Masson G. J. Am. Chem. Soc. 2011; 133: 14804
    • 4d Jensen KL, Dickmeiss G, Donslund BS, Poulsen PH, Jørgensen KA. Org. Lett. 2011; 13: 3678
    • 4e Dickmeiss G, Jensen KL, Worgull D, Franke PT, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 1580
    • 4f Jia Z.-X, Luo Y.-C, Xu P.-F. Org. Lett. 2011; 13: 832

      For selected reviews on organocatalysis, see:
    • 5a Pellissier H. Recent Developments in Asymmetric Organocatalysis. Royal Society of Chemistry; Cambridge: 2010
    • 5b Special issue on Asymmetric Organocatalysis 2010; 291: 1
    • 5c Enantioselective Organocatalysis: Reactions and Experimental Procedures. Dalko PI. Wiley-VCH; Weinheim: 2007
    • 5d Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
    • 5e Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 5f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 5g Pellissier H. Tetrahedron 2007; 63: 9267
    • 5h Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 5i Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416

      For selected reviews on domino reactions, see:
    • 6a Pellissier H. Asymmetric Domino Reactions . Royal Society of Chemistry; Cambridge: 2013
    • 6b Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 6c Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 6d Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037
    • 6e Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 6f Walji AM, MacMillan DW. C. Synlett 2007; 1477
    • 6g Chapman CJ, Frost CG. Synthesis 2007; 1
    • 6h Nicolaou KC, Edmonds DJ, Bulger PC. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 6i Guo H.-C, Ma J.-A. Angew. Chem. Int. Ed. 2006; 45: 354
    • 6j Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006

      For selected reviews on catalysis by bifunctional cinchona thioureas, see:
    • 7a Marqués-López E, Herrera RP In New Strategies in Chemical Synthesis and Catalysis . Pignataro B. Wiley-VCH; Weinheim: 2010. Chap. 8, 175
    • 7b Han B, Li J.-L, Xiao Y.-C, Zhou S.-L, Chen Y.-C. Curr. Org. Chem. 2011; 15: 4128
    • 7c Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593
    • 7d Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis. Song CE. Wiley-VCH; Weinheim: 2009
    • 7e Connon SJ. Chem. Commun. 2008; 2499
    • 7f Marcelli T, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 7496

      Du and co-workers used a bifunctional cinchona squaramide derivative as the catalyst:
    • 8a Yang W, He H.-X, Gao Y, Du D.-M. Adv. Synth. Catal. 2013; 355: 3670

    • We used a bifunctional cinchona thiourea derivative as the catalyst:
    • 8b Kim S, Kang K.-T, Kim S.-G. Tetrahedron 2014; 70: 5114
  • 9 Du and co-workers reported one example of this reaction between 1a and 2a in which a squaramide derivative was used as the catalyst. See ref. 8a.
    • 10a Sakamoto S, Inokuma T, Takemoto Y. Org. Lett. 2011; 13: 6374
    • 10b Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 11 Crystallographic data for compound 3ae have been deposited with the accession number CCDC 990345, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
    • 12a Li X, Yang C, Jin J.-L, Xue X.-S, Cheng J.-P. Chem. Asian J. 2013; 8: 997
    • 12b Zhu JL, Zhang Y, Liu C, Zheng A.-M, Wang W. J. Org. Chem. 2012; 77: 9813
    • 12c Wang X.-F, Hua Q.-L, Cheng Y, An X.-L, Yang QQ, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2010; 49: 8379
    • 12d Baslé O, Raimondi W, Sanchez Duque Mde M, Bonne D, Constantieux T, Rodriguez J. Org. Lett. 2010; 12: 5246
    • 12e Tan B, Lu Y, Zeng X, Chua PJ, Zhong G. Org. Lett. 2010; 12: 2682
    • 12f Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
    • 12g Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119