Synlett 2015; 26(15): 2161-2160
DOI: 10.1055/s-0034-1378830
letter
© Georg Thieme Verlag Stuttgart · New York

Amides and Ethers as Chemoselective Surrogates for Copper(II)-Catalyzed ortho Benzoyloxylation of 2-Phenylpyridines

Subhash L. Yedage
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019, India   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019, India   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 20 May 2015

Accepted after revision: 02 July 2015

Publication Date:
14 August 2015 (online)


Abstract

Chemoselective ortho benzoyloxylation of 2-phenylpyridine derivatives using amides and ethers as novel arylcarboxy sources using a Cu(II)/TBHP catalytic system has been reported. It is a simple protocol for ortho benzoyloxylation using amides and ethers as surrogates. A broad range of amides and ethers was found to be compatible under optimized reaction conditions to provide the corresponding products in good to excellent yield. The reaction proceeds through the cleavage of C–N, C–O, and C–H bonds and the formation of a new C–O bond via C–H functionalization.

Supporting Information

 
  • References and Notes

    • 1a Yu JQ, Giri R, Chen X. Org. Biomol. Chem. 2006; 4: 4041
    • 1b Ueda S, Nagasawa H. Angew. Chem. Int. Ed. 2008; 47: 6411
    • 1c Chen X, Engle KM, Wang D, Yu J. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1d Schwarz T, Heß D, Klüfers P. Dalton Trans. 2010; 39: 5544
    • 2a Siegbahn P, Blomberg M. Dalton Trans. 2009; 5832
    • 2b Flegeau E, Bruneau C, Dixneuf P, Jutand A. J. Am. Chem. Soc. 2011; 133: 10161
    • 2c Yang L, Huang H. Catal. Sci. Technol. 2012; 2: 1099
    • 2d Yang J. Org. Biomol. Chem. 2015; 13: 1930
    • 3a Li B, Feng H, Xu S, Wang B. Chemistry 2011; 17: 12573
    • 3b Li H, Wei W, Xu Y, Zhang C, Wan X. Chem. Commun. 2010; 47: 1497
    • 3c Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 4a Khemnar A, Bhanage B. Eur. J. Org. Chem. 2014; 6746
    • 4b Khemnar A, Bhanage B. RSC Adv. 2014; 4: 13405
    • 4c Khemnar A, Bhanage B. RSC Adv. 2014; 4: 8939
    • 4d Yadav DK, Bhanage BM. RSC Adv. 2015; 5: 12387
    • 4e Bhosale M, Sasaki T, Bhanage B. Catal. Sci. Technol. 2014; 4: 4274
    • 4f Yedage S, Bhanage B. Synthesis 2015; 47: 526
    • 4g Bhosale M, Bhanage B. RSC Adv. 2014; 4: 15122
    • 5a Jun C, Lee D, Lee H, Hong J. Angew. Chem. Int. Ed. 2000; 39: 3070
    • 5b Baslé O, Bidange J, Shuai Q, Li C. Adv. Synth. Catal. 2010; 352: 1145
    • 5c Kim M, Sharma S, Park J, Kim M, Choi Y, Jeon Y, Kwak J, Kim I. Tetrahedron 2013; 69: 6552
    • 6a Li C, Li P, Yang J, Wang L. Chem. Commun. 2012; 48: 4214
    • 6b Zhang N, Yu Q, Chen R, Huang J, Xia Y, Zhao K. Chem. Commun. 2013; 49: 9464
    • 7a Glover S. Tetrahedron 1998; 55: 3413
    • 7b Glover S, Mo G. J. Chem. Soc., Perkin Trans. 2 2002; 1728
    • 7c Glover S, White J, Rosser A, Digianantonio K. J. Org. Chem. 2011; 76: 9757
    • 7d Digianantonio K, Glover S, Johns J, Rosser A. Org. Biomol. Chem. 2011; 9: 4116
    • 8a Chen X, Hao X, Goodhue C, Yu J. J. Am. Chem. Soc. 2006; 128: 6790
    • 8b Lyons T, Sanford M. Chem. Rev. 2010; 110: 1147
    • 8c Bigi M, Reed S, White M. Nat. Chem. 2011; 3: 216
    • 8d Wang D, Zavalij P, Vedernikov A. Organometallics 2013; 32: 4882
    • 8e Patpi SR, Sridhar B, Tadikamalla PR, Kantevari S. RSC Adv. 2013; 3: 10251
    • 9a Ye Z, Wang W, Luo F, Zhang S, Cheng J. Org. Lett. 2009; 11: 3974
    • 9b Wang W, Luo F, Zhang S, Cheng J. J. Org. Chem. 2010; 75: 2415
    • 9c Wang W, Pan C, Chen F, Cheng J. Chem. Commun. 2011; 47: 3978
    • 9d Hu C, Zhang X, Ding Q, Lv T, Ge S, Zhong P. Tetrahedron Lett. 2012; 53: 2465
    • 9e Li L, Yu P, Cheng J, Chen F, Pan C. Chem. Lett. 2012; 41: 600
  • 11 Rout S, Guin S, Gogoi A, Majji G, Patel B. Org. Lett. 2014; 16: 1614
  • 12 Joshi S, Sawant S, Joshi J. Org. Process Res. Dev. 2001; 5: 152
    • 13a Park J, Han S, Sharma S, Han S, Shin Y, Mishra N, Kwak J, Lee C, Lee J, Kim I. J. Org. Chem. 2014; 79: 4735
    • 13b Han S, Sharma S, Park J, Kim M, Shin Y, Mishra N, Bae J, Kwak J, Jung Y, Kim I. J. Org. Chem. 2014; 79: 275
  • 14 Representative Experimental Procedure for the Oxidative Benzoyloxylation of 2-Phenylpyridine with N-Methoxybenzamide 2-Phenylpyridine (1a, 0.5 mmol, 77 mg), o-methoxybenzamide (2a, 0.5 mmol, 75 mg), and Cu(OAc)2 (5 mol%, 18 mg) in chlorobenzene (0.5 mL) were charged in an oven-dried 10 mL single-necked round-bottom flask. At r.t. TBHP (5–6 M in decane, 5 mmol. 0.5 mL) was added dropwise to the reaction flask with stirring. The flask was then equipped with a condenser, and the reaction mixture was stirred at 120 °C for 24 h open to the atmosphere, and the progress of reaction was monitored by TLC and/or GC. After completion, the reaction mixture was allowed to cool to r.t., diluted with EtOAc (10 mL), and the organic phase was washed with 5% aq NaHCO3 (2 × 5 mL) followed by H2O (2 × 5 mL). The organic phase was dried over Na2SO4, filtered, and the solvent was evaporated by rotary evaporation to obtain the crude product that was then purified by column chromatography (silica gel, 100–200 mesh), with PE–EtOAc as the eluent to afford the pure product. The products structure and purity were confirmed by GC–MS spectrometry and 1H and 13C NMR spectroscopic analysis. Representative Analytical Data 2-(Pyridin-2-yl)phenyl 4-Methylbenzoate (3ab) 10 Yield: 114 mg (79%); yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.59 (d, J = 4 Hz, 1 H), 7.95 (d, J = 8 Hz, 2 H), 7.78–7.75 (m, 1 H), 7.60–7.58 (m, 1 H), 7.54 (d, J = 8 Hz, 1 H), 7.46–7.44 (m, 1 H), 7.40–7.36 (m, 1 H), 7.29–7.23 (m, 3 H), 7.16–7.13 (m, 1 H), 2.41 (s, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 165.21, 155.55, 149.62, 148.33, 144.31, 136.13, 133.34, 130.92, 130.24, 129.71, 129.23, 126.69, 126.33, 123.77, 123.37, 122.12, 21.76 ppm. GC–MS (EI, 70 eV): m/z (%) = 289 (10.3) [M+], 119 (100), 91 (28.6), 65 (8.7), 40 (31.0).