Synlett 2015; 26(15): 2156-2160
DOI: 10.1055/s-0034-1378828
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Diastereoselective Synthesis of Spirocyclopropane-oxindoles Using InCl3 as a Catalyst in Water

Sengodagounder Muthusamy*
School of Chemistry, Bharathidasan University, Tiruchirappalli – 620 024, India   Email: muthu@bdu.ac.in
,
Rajagopal Ramkumar
School of Chemistry, Bharathidasan University, Tiruchirappalli – 620 024, India   Email: muthu@bdu.ac.in
› Author Affiliations
Further Information

Publication History

Received: 14 May 2015

Accepted after revision: 03 July 2015

Publication Date:
12 August 2015 (online)


Abstract

A highly diastereoselective method to synthesize a series of spiro[cyclopropane-1,3-oxindoles] from 3-diazooxindoles and chalcones using InCl3 as the catalyst in water is demonstrated.

Supporting Information

 
  • References and Notes


    • For recent reviews, see:
    • 1a Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 1b Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 1c Zhang Z.-H, Wang J.-B. Tetrahedron 2008; 64: 6577
    • 1d Pellissier H. Tetrahedron 2008; 64: 7041

      Copper-catalyzed cyclopropanation:
    • 2a Nozaki H, Moriuti S, Takaya H, Noyori R. Tetrahedron Lett. 1966; 7: 5239
    • 2b Fritschi H, Leutenegger U, Pfaltz A. Angew. Chem., Int. Ed. Engl. 1986; 25: 1005
    • 2c Evans DA, Woerpel KA, Hinman MM, Faul MM. J. Am. Chem. Soc. 1991; 113: 726
    • 2d Lo MM.-C, Fu GC. J. Am. Chem. Soc. 1998; 120: 10270
    • 2e Xu Z.-H, Zhu S.-N, Sun X.-L, Tang Y, Dai L.-X. Chem. Commun. 2007; 1960

      Rhodium-catalyzed cyclopropanation:
    • 3a DeAngelis A, Dmitrenko O, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2009; 131: 7230
    • 3b Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am. Chem. Soc. 2009; 131: 18034
    • 3c Nishimura T, Maeda Y, Hayashi T. Angew. Chem. Int. Ed. 2010; 49: 7324
    • 3d Lindsay VN. G, Nicolas C, Charette AB. J. Am. Chem. Soc. 2011; 133: 8972
    • 3e Qin C.-M, Boyarskikh V, Hansen JH, Hardcastle KI, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2011; 133: 19198
    • 3f Lindsay VN. G, Fiset D, Gristch PJ, Azzi S, Charette AB. J. Am. Chem. Soc. 2013; 135: 1463
    • 3g Doyle MP, Pieters RJ, Martin SF, Austin RE, Oalmann CJ, Mueller P. J. Am. Chem. Soc. 1991; 113: 1423
    • 3h Nagashima T, Davies HM. L. J. Am. Chem. Soc. 2001; 123: 2695

      Ruthenium-catalyzed cyclopropanation:
    • 4a Nishiyama H, Itoh Y, Matsumoto H, Park SB, Itoh K. J. Am. Chem. Soc. 1994; 116: 2223
    • 4b Miller JA, Jin W, Nguyen ST. Angew. Chem. Int. Ed. 2002; 41: 2953
    • 4c Xu Z.-J, Fang R, Zhao C.-Y, Huang J.-S, Li G.-Y, Zhu N.-Y, Che C.-M. J. Am. Chem. Soc. 2009; 131: 4405
    • 4d Ito J, Ujiie S, Nishiyama H. Chem. Eur. J. 2010; 16: 4986
    • 4e Abu-Elfotoh A, Phomkeona K, Shibatomi K, Iwasa S. Angew. Chem. Int. Ed. 2010; 49: 8439

      For limited protocols using 1,2-disubstituted alkenes, see:
    • 5a Lowenthal RE, Masamune S. Tetrahedron Lett. 1991; 32: 7373
    • 5b Ito K, Katsuki T. Synlett 1993; 638
    • 5c Østergaard N, Jensen JF, Tanner D. Tetrahedron 2001; 57: 6083
    • 5d Davies HM. L, Coleman MG, Ventura DL. Org. Lett. 2007; 9: 4971
    • 5e Suematsu H, Kanchiku S, Uchida T, Katsuki T. J. Am. Chem. Soc. 2008; 130: 10327
    • 5f Ventura DL, Li Z, Coleman MG, Davies HM. L. Tetrahedron 2009; 65: 3052
    • 5g Li J, Liao S.-H, Xiong H, Zhou Y.-Y, Sun X.-L, Zhang Y, Zhou X.-G, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 8838
    • 6a Hodgson DM, Labande AH, Muthusamy S. Org. React. 2013; 80: 133
    • 6b Miller DJ, Moody CJ. Tetrahedron 1995; 51: 10811
    • 7a Bindra JS. The Alkaloids . Vol. 14. Manske RH. F. Academic Press; New York: 1973: 84
    • 7b Chen DY.-K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
    • 9a Biochemistry of the Cyclopropyl Group. In The Chemistry of the Cyclopropyl Group. Patai S, Rappoport Z. Wiley; New York: 1987. Chap. 16, 959
    • 9b Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 9c Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
    • 9d Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748

      For biologically important spiro[cyclopropane-2-oxindoline] derivatives, see:
    • 10a Ellis D, Kuhen KL, Anaclerio B, Wu B, Wolff K, Yin H, Bursulaya B, Caldwell J, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 4246
    • 10b Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TY, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2105
    • 10c Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
    • 10d He Y, Jiang T, Kuhen KL, Ellis DA, Wu B, Wu TY, Bursulaya B. US 7,205,328, 2007
    • 11a Muthusamy S, Gunanathan C. Synlett 2003; 1559
    • 11b Muthusamy S, Ramkumar R. Tetrahedron Lett. 2014; 55: 6389
    • 12a Chiericato M, Croce PD, Licandro E. J. Chem. Soc., Perkin Trans. 1 1979; 211
    • 12b Aggarwal VK, Alsono E, Fang G, Ferrara M, Hynd G, Porcelloni M. Angew. Chem. Int. Ed. 2001; 40: 1433
    • 12c Wang QG, Deng XM, Zhu BH, Ye LW, Sun XL, Li CY, Zhu CY, Shen Q, Tang T. J. Am. Chem. Soc. 2008; 130: 5408
    • 12d Cao WG, Zhang H, Chen J, Deng HM, Shao M, Lei L, Qian JX, Zhu Y. Tetrahedron 2008; 64: 6670
  • 13 Typical Procedure for the Preparation of Spiro-cyclopropaneoxindoles To a solution of InCl3 (15 mg, 20 mol%) in H2O (5 mL) was added diazoamide 1e (100 mg, 0.35 mmol) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (100 mg, 0.42 mmol) under an air atmosphere. The reaction mixture was stirred at ambient temperature for 16 h and extracted with EtOAc (3 × 25 mL). The organic phase was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography using silica gel (hexanes–EtOAc) to afford cyclopropane 3d (126 mg, 73%) as a colorless solid. 2-Benzoyl-1′-benzyl-5′-chloro-3-phenylspiro[cyclopropane-1,3′-indol]-2′(1′H)-one (3d) Colorless solid; yield 68%; mp 173–175 °C. IR (ATR): νmax = 2928, 2855, 1731, 1608, 1468, 1353, 1300, 1188, 1163, 1094, 753 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.79 (s, 3 H, OCH3), 4.09 (d, 1 H, J = 8.0 Hz, CH), 4.25 (d, 1 H, J = 8.0 Hz, CH), 4.89 (d, 1 H, J = 15.6 Hz, CHH), 4.96 (d, 1 H, J = 15.2 Hz, CHH),6.76 (d, 1 H, J = 7.2 Hz, ArH), 6.86 (d, 2 H, J = 8.0 Hz, ArH), 6.94 (t, 1 H, J = 6.8 Hz, ArH), 7.12 (t, 1 H, J = 6.8 Hz, ArH), 7.21–7.36 (m, 10 H, ArH), 7.86 (d, 2 H, J = 8.0 Hz, ArH). 13C NMR (100 MHz, CDCl3): δ = 39.3 (CH3), 41.6 (quat-C) 41.6 (CH), 44.1, (CH2), 55.2 (OCH3), 109.0 (=CH), 113.7 (=CH), 121.8 (=CH), 122.5 (=CH), 125.1 (quat-C), 125.9 (quat-C), 127.3 (=CH), 127.6 (=CH), 127.7 (=CH), 128.8 (=CH), 129.1 (=CH), 129.8 (=CH), 130.3 (=CH), 135.4 (quat-C), 136.1 (quat-C), 140.2 (quat-C), 142.8 (quat-C), 159.1 (quat-C), 172.1 (C=O), 191.9 (C=O). HRMS (ESI+): m/z calcd for C31H24ClNO3 [M + H]+: 494.1523; found: 494.1529.

    • 3-Diazooxindole 1 and the alkenes could not be dissolved in water, however, the reaction proceeded smoothly. For discussions about transformations ‘in water’ or ‘on water’, see:
    • 14a Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
    • 14b Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
  • 15 Patai S, Rappoport Z. The Chemistry of the Cyclopropyl Group . Wiley and Sons; New York: 1987