Synlett 2015; 26(15): 2127-2130
DOI: 10.1055/s-0034-1378826
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Conjugated 1,3,4-Thiadiazole Hybrids through Palladium-Catalyzed Cross-Coupling of 2,5-Bis(4-bromophenyl)-1,3,4-thiadiazole with Boronic Acids

Monika Wróblowska
a   Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   Email: Agnieszka.Kudelko@polsl.pl
,
Agnieszka Kudelko*
a   Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   Email: Agnieszka.Kudelko@polsl.pl
,
Mieczysław Łapkowski
b   Department of Physical Chemistry and Technology of Polymers, The Silesian University of Technology, Strzody 9, 44100 Gliwice, Poland
c   Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
› Author Affiliations
Further Information

Publication History

Received: 09 April 2015

Accepted after revision: 29 June 2015

Publication Date:
10 August 2015 (online)


Abstract

New derivatives of 2,5-bis(4-heteroarylphenyl)-1,3,4-thiadiazole were synthesized under Suzuki cross-coupling reactions from 2,5-bis(4-bromophenyl)-1,3,4-thiadiazole and commercially available boronic acids. Reactions were conducted in a two-phase solvent system in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium(0), cesium carbonate as a base, and tetrabutylammonium bromide playing a role of a phase-transfer catalyst.

Supporting Information

 
  • References and Notes

    • 1a Hu Y, Li C, Wang X, Yang Y, Zhu H. Chem. Rev. 2014; 114: 5572
    • 1b Haider S, Alam MS, Hamid H. Eur. J. Med. Chem. 2015; 92: 156
    • 1c Tambe SM, Tasaganva RG, Inamdar SR, Kariduraganavar MY. J. Appl. Polym. Sci. 2012; 125: 1049
    • 2a Sharma B, Verma A, Prajapati S, Sharma UK. Int. J. Med. Chem. 2013; 1
    • 2b Shrivastava K, Purohit S, Singhal S, Pradesh U, Pradesh M. Asian J. Biomed. Pharm. Sci. 2013; 3: 6
    • 3a Kraft A, Grimsdale AC, Holmes AB. Angew. Chem. Int. Ed. 1998; 37: 402
    • 3b Segura JL. Acta Polym. 1998; 49: 319
    • 3c Mitschke U, Bauerle P. J. Mater. Chem. 2000; 10: 1471
    • 4a Schulz B, Bruma M, Brehmer L. Adv. Mater. 1997; 9: 601
    • 4b Thelakkat M, Schmidt HW. Polym. Adv. Technol. 1998; 9: 429
    • 5a Adachi C, Tsutsui T, Saito S. Appl. Phys. Lett. 1989; 55: 1489
    • 5b Adachi C, Tsutsui T, Saito S. Appl. Phys. Lett. 1990; 56: 799
  • 6 Wang C, Jung GY, Hua Y, Pearson C, Bryce MR, Petty MC, Batsanov AS, Goeta AE, Howard JA. K. Chem. Mater. 2001; 13: 1167
    • 7a Kim DU, Aminaka E, Tsutsui T, Saito S. Jpn. J. Appl. Phys., Part 1 1995; 34: 6255
    • 7b Kim DU, Tsutsui T. Mol. Cryst., Liq. Cryst. Sci. Technol., Sect. A 1996; 280: 325
  • 8 Grykien R, Luszczynska B, Glowacki I, Kurach E, Rybakiewicz R, Kotwica K, Zagorska M, Pron A, Tassini P, Maglione MG, Del Mauro AD. G, Fasolino T, Rega R, Pandolfi G, Minarini C, Aprano S. Opt. Mater. (Amsterdam, Neth.) 2014; 37: 193
    • 9a Wang C, Jung GY, Batsanov AS, Bryce MR, Petty MC. J. Mater. Chem. 2002; 12: 173
    • 9b Waskiewicz K, Gabański R, Żak J, Suwiński J. Electrochem. Solid-State Lett. 2005; 8: E24
    • 9c Fuks-Janczarek I, Reshak AH, Kuźnik N, Kityk IV, Gabański R, Łapkowski M, Motyka R, Suwiński J. Spectrochim. Acta, Part A 2009; 72: 394
    • 9d Łapkowski M, Motyka R, Suwiński J, Data P. Macromol. Chem. Phys. 2012; 231: 29
    • 9e Data P, Łapkowski M, Motyka R, Suwiński J. Electrochem. Acta 2012; 59: 567
    • 10a Schulz B, Orgzall I, Freydank A, Xii C. Adv. Colloid Interface Sci. 2005; 116: 143
    • 10b Chen ZK, Meng H, Lai YH, Huang W. Macromolecules 1999; 32: 4351
    • 10c Tamoto N, Adachi C, Nagai K. Chem. Mater. 1997; 9: 1077
    • 10d Sinigersky V, Wegner G, Schopov I. Eur. Polym. J. 1993; 29: 617
    • 11a Dimitrowa K, Hauschild J, Zaschke H, Schubert H. J. Prakt. Chem. (Leipzig) 1980; 322: 933
    • 11b Lin K.-T, Kuo H.-M, Sheu H.-S, Lai CK. Tetrahedron 2013; 69: 9045
    • 11c Morikawa H, Tomishima M, Kayakiri N, Araki T, Barrett D, Akamatsu S, Matsumoto S, Uchida S, Nakai T, Takeda S, Maki K. Bioorg. Med. Chem. Lett. 2014; 24: 1172
    • 12a Thomsen I, Pedersen U, Rasmussen PB, Yde B, Andersen TP, Lawesson S.-O. Chem. Lett. 1983; 12: 809
    • 12b Deng H, Bernier SG, Doyle E, Lorusso J, Morgan BA, Westlin WF, Evindar G. ACS Med. Chem. Lett. 2013; 4: 942
    • 12c Deokar H, Chaskar J, Chaskar A. J. Heterocycl. Chem. 2014; 51: 719
    • 13a Linganna N, Lokanatha Rai KM. Synth. Commun. 1998; 28: 461
    • 13b Swapna M, Premakumari C, Reddy SN, Padmaja A, Padmavathi V, Kondaiah P, Krishna NS. Chem. Pharm. Bull. 2013; 61: 722
    • 13c Muralikrishna A, Mallikarjuna Reddy G, Lavanya G, Padmavathi V, Padmaja A. J. Heterocycl. Chem. 2014; 51: 179
    • 14a Yella R, Khatun N, Rout SK, Patel BK. Org. Biomol. Chem. 2011; 9: 3235
    • 14b Kashtoh H, Hussain S, Khan A, Saad SM, Khan JA. J, Khan KM, Perveen S, Choudhary MI. Bioorg. Med. Chem. 2014; 22: 5454
    • 15a Remers WA, Gibs GJ, Weiss MJ. J. Heterocycl. Chem. 1969; 6: 835
    • 15b Yu P, Hu J, Wan R, Li X, Zheng S, Xu Y. J. Chem. Res. 2014; 38: 347
    • 15c Abdel-Aziem A. J. Heterocycl. Chem. 2015; 52: 251
  • 16 Kudelko A, Wróblowska M. Tetrahedron Lett. 2014; 55: 3252
    • 18a Suzuki A. Metal-Catalyzed Cross-Coupling Reactions. Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998. Chap. 2
    • 18b Suzuki A. J. Organomet. Chem. 2002; 653: 83
  • 19 Kudelko A, Wróblowska M, Jarosz T, Łaba K, Łapkowski M. ARKIVOC 2015; (v): 287
  • 20 Siegrist AE, Maeder E, Dunnenberger M, Liechti P. GB 899842, 1962 ; Chem. Abstr. 1962, 57, 13767
  • 21 Representative Procedure for Suzuki Coupling 2,5-Bis(4-bromophenyl)-1,3,4-thiadiazole (3, 0.40 g, 1.00 mmol), the appropriate boronic acid (2.50 mmol), tetrakis(triphenylphosphine)palladium(0) (0.06 g, 0.05 mmol), TBAB (0.03 g, 0.10 mmol), and Cs2CO3 (3.26 g, 10.00 mmol) were treated with a combination of toluene (10 mL), H2O (6 mL), and EtOH (3 mL). The mixture was heated to 80 °C (oil bath) for 2–6 h (TLC monitoring). After cooling, CHCl3 (200 mL) was added and the mixture filtered through silica gel (20 mL). The filtrate was separated, the organic layer was dried over MgSO4 and then concentrated on a rotary evaporator. The residue was treated with a mixture of benzene–EtOAc (3:1). The solid precipitate was filtered off, washed with benzene–EtOAc (3:1) and air-dried to give the pure 2,5-disubstituted 1,3,4-thiadiazole. 3,5-Bis(4-biphenylyl)-1,3,4-thiadiazole (5a) White-pearl solid (0.34 g, 92% yield); mp 296–298 °C (lit.16 294–296 °C). 1H NMR (400 MHz, CDCl3): δ = 7.41 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.66 (d, J = 7.6 Hz, 2 H), 7.74 (d, J = 8.4 Hz, 2 H), 8.11 (d, J = 8.4 Hz, 2 H). 13C NMR (400 MHz, CDCl3): δ = 124.4, 127.1, 127.8, 128.1, 128.4, 129.0, 139.9, 143.9, 167.8. UV/Vis: λmax (CHCl3) 335.0 nm (ε · 10–3 60.3 cm–1 M–1). IR (ATR): ν = 3060, 3037, 2162, 1946, 1821, 1675, 1604, 1561, 1488, 1451, 1432, 1420, 1401, 1316, 1253, 1185, 1170, 1100, 1040, 1027, 1005, 997, 988, 910, 838, 760,718, 684 cm–1. Anal. Calcd for C26H18N2S: C, 79.97; H, 4.65; N, 7.17. Found: C, 79.99; H, 4.63; N, 7.21. HRMS: m/z calcd for [C26H18N2S + H+]: 391.1269; found: 391.1267.