Synlett 2015; 26(15): 2127-2130
DOI: 10.1055/s-0034-1378826
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Conjugated 1,3,4-Thiadiazole Hybrids through Palladium-Catalyzed Cross-Coupling of 2,5-Bis(4-bromophenyl)-1,3,4-thiadiazole with Boronic Acids

Monika Wróblowska
a   Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   eMail: Agnieszka.Kudelko@polsl.pl
,
Agnieszka Kudelko*
a   Department of Chemical Organic Technology and Petrochemistry, The Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland   eMail: Agnieszka.Kudelko@polsl.pl
,
Mieczysław Łapkowski
b   Department of Physical Chemistry and Technology of Polymers, The Silesian University of Technology, Strzody 9, 44100 Gliwice, Poland
c   Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 09. April 2015

Accepted after revision: 29. Juni 2015

Publikationsdatum:
10. August 2015 (online)


Abstract

New derivatives of 2,5-bis(4-heteroarylphenyl)-1,3,4-thiadiazole were synthesized under Suzuki cross-coupling reactions from 2,5-bis(4-bromophenyl)-1,3,4-thiadiazole and commercially available boronic acids. Reactions were conducted in a two-phase solvent system in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium(0), cesium carbonate as a base, and tetrabutylammonium bromide playing a role of a phase-transfer catalyst.

Supporting Information

 
  • References and Notes

    • 2a Sharma B, Verma A, Prajapati S, Sharma UK. Int. J. Med. Chem. 2013; 1
    • 2b Shrivastava K, Purohit S, Singhal S, Pradesh U, Pradesh M. Asian J. Biomed. Pharm. Sci. 2013; 3: 6
  • 6 Wang C, Jung GY, Hua Y, Pearson C, Bryce MR, Petty MC, Batsanov AS, Goeta AE, Howard JA. K. Chem. Mater. 2001; 13: 1167
  • 8 Grykien R, Luszczynska B, Glowacki I, Kurach E, Rybakiewicz R, Kotwica K, Zagorska M, Pron A, Tassini P, Maglione MG, Del Mauro AD. G, Fasolino T, Rega R, Pandolfi G, Minarini C, Aprano S. Opt. Mater. (Amsterdam, Neth.) 2014; 37: 193
  • 16 Kudelko A, Wróblowska M. Tetrahedron Lett. 2014; 55: 3252
  • 19 Kudelko A, Wróblowska M, Jarosz T, Łaba K, Łapkowski M. ARKIVOC 2015; (v): 287
  • 20 Siegrist AE, Maeder E, Dunnenberger M, Liechti P. GB 899842, 1962 ; Chem. Abstr. 1962, 57, 13767
  • 21 Representative Procedure for Suzuki Coupling 2,5-Bis(4-bromophenyl)-1,3,4-thiadiazole (3, 0.40 g, 1.00 mmol), the appropriate boronic acid (2.50 mmol), tetrakis(triphenylphosphine)palladium(0) (0.06 g, 0.05 mmol), TBAB (0.03 g, 0.10 mmol), and Cs2CO3 (3.26 g, 10.00 mmol) were treated with a combination of toluene (10 mL), H2O (6 mL), and EtOH (3 mL). The mixture was heated to 80 °C (oil bath) for 2–6 h (TLC monitoring). After cooling, CHCl3 (200 mL) was added and the mixture filtered through silica gel (20 mL). The filtrate was separated, the organic layer was dried over MgSO4 and then concentrated on a rotary evaporator. The residue was treated with a mixture of benzene–EtOAc (3:1). The solid precipitate was filtered off, washed with benzene–EtOAc (3:1) and air-dried to give the pure 2,5-disubstituted 1,3,4-thiadiazole. 3,5-Bis(4-biphenylyl)-1,3,4-thiadiazole (5a) White-pearl solid (0.34 g, 92% yield); mp 296–298 °C (lit.16 294–296 °C). 1H NMR (400 MHz, CDCl3): δ = 7.41 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.66 (d, J = 7.6 Hz, 2 H), 7.74 (d, J = 8.4 Hz, 2 H), 8.11 (d, J = 8.4 Hz, 2 H). 13C NMR (400 MHz, CDCl3): δ = 124.4, 127.1, 127.8, 128.1, 128.4, 129.0, 139.9, 143.9, 167.8. UV/Vis: λmax (CHCl3) 335.0 nm (ε · 10–3 60.3 cm–1 M–1). IR (ATR): ν = 3060, 3037, 2162, 1946, 1821, 1675, 1604, 1561, 1488, 1451, 1432, 1420, 1401, 1316, 1253, 1185, 1170, 1100, 1040, 1027, 1005, 997, 988, 910, 838, 760,718, 684 cm–1. Anal. Calcd for C26H18N2S: C, 79.97; H, 4.65; N, 7.17. Found: C, 79.99; H, 4.63; N, 7.21. HRMS: m/z calcd for [C26H18N2S + H+]: 391.1269; found: 391.1267.