RSS-Feed abonnieren
DOI: 10.1055/s-0034-1378818
Panchromatic Push–Pull Dyes of Elongated Form from Triphenylamine, Diketopyrrolopyrrole, and Tetracyanobutadiene Modules
Publikationsverlauf
Received: 07. Mai 2015
Accepted after revision: 23. Juni 2015
Publikationsdatum:
29. Juli 2015 (online)
Abstract
Several symmetrical and unsymmetrical thiophene-functionalized diketopyrrolopyrrole chromophores bearing a bis(p-methoxyphenyl)-p-phenylamine substituent were synthesized through palladium-catalyzed cross-coupling reactions. Mono-substitution and di-substitution occur using either alkyne or borolane groups, allowing the preparation of mixed systems. The alkyne derivatives could be prepared in high yields, and are versatile building blocks for the [2+2] cycloaddition of tetracyanoethylene, leading to 1,1,4,4-tetracyanobuta-1,3-diene derivatives. These interesting push–pull molecules exhibit a rich redox activity, which is understandable in light of the behavior of appropriate reference compounds. These innovative and rationally designed scaffolds are highly colored, exhibiting high absorption coefficients and spanning an absorption range of more than 600 nm of the UV/Vis electromagnetic spectrum.
Key words
cross-coupling reactions - cycloaddition reactions - push–pull molecules - panchromatic dyes - redox propertiesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378818.
- Supporting Information
-
References and Notes
- 1a Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, Barzoukas M, Lebus S, Wortmann R. Chem. Eur. J. 1997; 3: 1091
- 1b Kanis DR, Ratner MA, Marks TJ. Chem. Rev. 1994; 94: 195
- 1c Dalton LR, Sullivan PA, Bale DH. Chem. Rev. 2010; 110: 25
- 2a So PT. C, Dong CY, Masters BR, Berland KM. Annu. Rev. Biomed. Eng. 2000; 2: 399
- 2b Geiger FM. Annu. Rev. Phys. Chem. 2009; 60: 61
- 3 Bürckstümmer H, Tulyakova EV, Deppisch M, Lenze MR, Kronenberg NM, Gsaänger M, Stolote M, Meerholz K, Würthner F. Angew. Chem. Int. Ed. 2011; 50: 11628
- 4a Chou Y.-H, Chang H.-C, Liu C.-L, Chen W.-C. Polymer. Chem. 2015; 6: 341
- 4b Lei T, Wang J.-Y, Pei J. Acc. Chem. Res. 2014; 47: 1117
- 5 Ning Z, Tian H. Chem. Commun. 2009; 37: 5483
- 6a Cha H, Kim HN, An TK, Kang MS, Kwon S.-K, Kim Y.-H, Park CE. Appl. Mater. Inter. 2014; 6: 15774
- 6b Cha H, Kim HN, An TK, Kang MS, Kwon S.-K, Kim Y.-H, Park CE. Appl. Mater. Inter. 2014; 6: 15774
- 8a Walker B, Tamayo AB, Dang X.-D, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen T.-Q. Adv. Funct. Mater. 2009; 19: 3063
- 8b Bura T, Leclerc N, Bechara R, Lévêque P, Heiser T, Ziessel R. Adv. Energy Mater. 2013; 3: 1118
- 9a Li Y, Sonar P, Murphy L, Hong W. Energy Environ. Sci. 2013; 6: 1684
- 9b Nielsen CB, Turbiez M, McCulloch I. Adv. Mater. 2013; 25: 1859
- 9c Chandran D, Lee K.-S. Macromol. Res. 2013; 21: 272
- 10a Fischer GM, Ehlers AP, Zumbusch A, Daltrozzo E. Angew. Chem. Int. Ed. 2004; 126: 10619
- 10b Fischer GM, Isomäki-Krondahl M, Göttker-Schnetmann I, Daltrozzo E, Zumbusch A. Chem. Eur. J. 2009; 15: 4857
- 11a Ftouni H, Bolze F, Nicoud J.-F. Dyes Pigm. 2013; 97: 77
- 11b Ftouni H, Bolze F, de Roquigny H, Nicoud J.-F. Bioconjugate Chem. 2013; 24: 942
- 11c Zhang G, Li H, Bi S, Song L, Lu Y, Zhang L, Yu J, Wang L. Analyst 2013; 138: 6163
- 11d Zhang H, Song L, Bi S, Wu Y, Yu J, Yang L. Dyes Pigm. 2014; 102: 100
- 11e Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud J.-F, Flamigni L, Ventura B. Angew. Chem. Int. Ed. 2015; 54: 169
- 12a Lin S, Liu S, Ye F, Xu L, Zeng W, Wang L, Li L, Beuerman R, Cao D. Sens. Actuators, B 2013; 182: 176
- 12b Hang Y, Yang L, Qu Y, Hua J. Tetrahedron Lett. 2014; 55: 6998
- 13 Shen H, Kou C, He M, Yang H, Liu K. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 739
- 14a Schmidt CD, Hirsch A In Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry . Pignataro B. Wiley-VCH; Weinheim: 2010: 283
- 14b Traoré T, Clavé G, Delacour L, Kotera N, Renard P.-Y, Romieu A, Berthault P, Boutin C, Tassali N, Rousseau B. Chem. Commun. 2011; 47: 9702
- 14c Cole EL, Arunkumar E, Xiao S, Smith BA, Smith BD. Org. Biomol. Chem. 2012; 10: 5769
- 14d Jiang J, Vairaprakash P, Reddy KR, Sahin T, Pavan MP, Lubian E, Lindsey JS. Org. Biomol. Chem. 2014; 12: 86
- 14e Thomas AW, Henson ZB, Du J, Vandenberg CA, Bazan GC. J. Am. Chem. Soc. 2014; 136: 3736
- 14f Wiktorowski S, Rosazza C, Winterhalder MJ, Daltrozzo E, Zumbusch A. Chem. Commun. 2014; 50: 4755
- 14g Bernhard Y, Winckler P, Chassagnon R, Richard P, Gigot E, Perrier-Cornet J.-M, Decreau RA. Chem. Commun. 2014; 50: 13975
- 15 Hablot D, Retailleau P, Ziessel R. Chem. Eur. J. 2010; 16: 13346
- 16 Mula S, Hablot D, Jagtap KK, Heyer E, Ziessel R. New J. Chem. 2013; 37: 303
- 17 Heyer E, Lory P, Leprince J, Moreau M, Romieu A, Guardigli M, Roda A, Ziessel R. Angew. Chem. Int. Ed. 2015; 54: 2995
- 18 Huo L, Hou J, Chen H.-Y, Zhang S, Jiang Y, Chen TL, Yang Y. Macromolecules 2009; 42: 6564
- 19a Kato S.-I, Diederich F. Chem. Commun. 2010; 46: 1994
- 19b Kato SI, Kivala M, Schweizer W, Boudon C, Gisselbrecht JP, Diederich F. Chem. Eur. J. 2009; 15: 8687
- 19c Jarowski PD, Wu Y.-L, Boudon C, Gisselbrecht J.-P, Gross M, Schweizer WB, Diederich F. Org. Biomol. Chem. 2009; 7: 1312
- 19d Reutenauer P, Kivala M, Jarowski PD, Boudon C, Gisselbrecht J.-P, Gross M, Diederich F. Chem. Commun. 2007; 4898
- 20 Niu S, Ulrich G, Retailleau P, Ziessel R. Tetrahedron Lett. 2011; 52: 4848
- 21 Esembeson B, Scimeca ML, Michinobu T, Diederich F, Biaggio I. Adv. Mater. 2008; 20: 4584
- 22 Yamagata T, Kuwabara J, Kanbara T. Eur. J. Org. Chem. 2012; 5282
- 23a Shoji T, Ito S, Toyota K, Yasunami M, Morita N. Chem. Eur. J. 2008; 14: 8398
- 23b Shoji T, Higashi J, Ito S, Okujima T, Yasunami M, Morita N. Chem. Eur. J. 2011; 17: 5116
- 23c Shoji T, Maruyama A, Yaku C, Kamata N, Ito S, Okujima T, Toyota K. Chem. Eur. J. 2015; 21: 402
- 24a Shoji T, Shimomura E, Maruyama M, Maruyama A, Ito S, Okujima T, Toyota K, Morita N. Eur. J. Org. Chem. 2013; 7785
- 24b Gautam P, Maragani R, Misra R. Tetrahedron Lett. 2014; 55: 6827
- 24c Maragani R, Misra R. Tetrahedron 2014; 70: 3390
- 24d Misra R, Gautam P. Org. Biomol. Chem. 2014; 12: 5448
- 25 Compound 6: Tetracyanoethylene (41.0 mg, 0.320 mmol, 1.9 equiv) was added to a solution of 5 (144.3 mg, 0.169 mmol) in 1,2-dichloroethane (25 mL). The reaction medium was stirred at 40 °C for 87 h, then evaporated to dryness. Purification by column chromatography (SiO2, CH2Cl2–petroleum ether, 80:20 to 100:0 with 2% Et3N), followed by recrystallization (THF–n-pentane) afforded 6 (129.6 mg, 78%) as a black powder. 1H NMR (300 MHz, CDCl3): δ = 0.83–0.91 (m, 12 H), 1.21–1.40 (m, 16 H), 1.78–1.92 (m, 2 H), 3.84 (s, 6 H), 4.00–4.06 (m, 4 H), 6.81 (d, 3 J = 9.2 Hz, 2 H), 6.92 (d, 3 J = 8.9 Hz, 4 H), 7.16 (d, 3 J = 8.9 Hz, 4 H), 7.33 (dd, 3 J = 5.0, 4.8 Hz, 1 H), 7.67 (d, 3 J = 9.2 Hz, 2 H), 7.77 (dd, 3 J = 5.0 Hz, 4 J = 1.0 Hz, 1 H), 7.84 (d, 3 J = 4.5 Hz, 1 H), 9.06 (d, 3 J = 4.5 Hz, 1 H), 9.17 (dd, 3 J = 4.1 Hz, 4 J = 0.8 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 10.5, 14.1, 23.2, 23.5, 23.6, 28.3, 28.4, 30.1, 30.2, 39.1, 39.8, 46.2, 46.4, 55.7, 80.1, 108.6, 112.0, 113.0, 113.0, 113.1, 113.9, 115.5, 116.8, 120.0, 125.4, 128.3, 129.1, 129.4, 132.1, 133.3, 135.6, 136.0, 137.1, 137.7, 138.1, 140.2, 144.4, 154.8, 157.5, 158.5, 161.0, 161.9, 162.1. UV/Vis (toluene): λ (ε, M–1cm–1) = 691 (37 200), 636 (27 300), 483 (31 500), 333 (16 000) nm. MS (EI): m/z (%) calcd for C58H57N7O4S2: 979.39 (100); found 979.2 (100), 953.2 (25). Anal. Calcd for C58H57N7O4S2 (980.25): C, 71.07; H, 5.86, N, 10.00. Found: C, 70.84; H, 5.47; N, 9.77.
- 26 Compound 8: Tetracyanoethylene (23.3 mg, 0.182 mmol, 3.4 equiv) was added to a solution of 7 (64.2 mg, 0.054 mmol) in 1,2-dichloroethane (15 mL). The reaction medium was stirred at 40 °C for 18 h, then evaporated to dryness. Purification by column chromatography (Al2O3; CH2Cl2–petroleum ether, 70:30 to 80:20), followed by recrystallization (THF–n-pentane) afforded 8 (41.6 mg, 54%) as a brownish black powder. 1H NMR (300 MHz, CDCl3): δ = 0.83–0.91 (m, 12 H), 1.21–1.36 (m, 16 H), 1.78–1.84 (m, 2 H), 3.82 (s, 12 H), 4.02 (d, 3 J = 7.9 Hz, 4 H), 6.81 (d, 3 J = 9.2 Hz, 4 H), 6.91–6.95 (m, 8 H), 7.13–7.18 (m, 8 H), 7.66 (d, 3 J = 9.4 Hz, 4 H), 7.85 (d, 3 J = 4.6 Hz, 2 H), 9.20 (d, 3 J = 4.6 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 10.4, 14.1, 23.2, 23.4, 28.2, 30.0, 39.7, 46.6, 55.7, 76.5, 81.8, 111.6, 112.7, 112.9, 113.1, 113.8, 115.5, 116.9, 119.8, 128.3, 132.1, 137.1, 137.3, 137.7, 138.8, 139.0, 140.0, 154.9, 157.7, 158.6, 161.1, 161.6. UV/Vis (toluene): λ (ε, M–1cm–1) = 749 (48 100), 689 (36 500), 472 (52 700), 393 (27 400) nm. MS (EI): m/z (%) calcd for C86H74N12O6S2: 1434.53 (100), 1435.53 (99.3); found: 1435.4 (100), 1408.4 (35), 1382.4 (15). Anal. Calcd for C86H74N12O6S2 (1434.71): C, 71.94; H, 5.20, N, 11.71. Found: C, 71.72; H, 4.84; N, 11.49.
- 27 Compound 14: Tetracyanoethylene (31.0 mg, 0.242 mmol, 2.3 equiv) was added to a solution of 13 (100.4 mg, 0.105 mmol) in 1,2-dichloroethane (25 mL). The round-bottom flask was equipped with a condenser and the mixture was stirred at 50 °C for 48 h. The reaction medium was extracted with CH2Cl2, washed with H2O, and dried with brine and over Na2SO4. Purification by column chromatography (SiO2; petroleum ether–EtOAc, 85:15 to 75:25), followed by precipitation from CH2Cl2–MeOH afforded 14 (100.0 mg, 88%) as a black powder. 1H NMR (400 MHz, CDCl3): δ = 0.84–0.93 (m, 12 H), 1.21–1.40 (m, 16 H), 1.81–1.87 (m, 1 H), 1.92–1.99 (m, 1 H), 3.82 (s, 6 H), 3.92 (s, 3 H), 4.02–4.08 (m, 4 H), 6.88 (d, 3 J = 8.9 Hz, DnAB syst = 94.0 Hz, 4 H), 6.91 (d, 3 J = 8.8. Hz, 2 H), 7.05 (d, 3 J = 9.1 Hz, 2 H), 7.11 (d, 3 J = 8.9 Hz, DnAB syst = 94.0 Hz, 4 H), 7.41 (d, 3 J = 4.4 Hz, 1 H), 7.49 (d, 3 J = 8.8 Hz, 2 H), 7.82 (d, 3 J = 9.1 Hz, 2 H), 7.83 (d, 3 J = 4.7 Hz, 1 H), 9.08 (d, 3 J = 4.6 Hz, 1 H), 9.35 (d, 3 J = 4.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 10.52, 10.61, 14.15, 14.21, 23.2, 23.5, 23, 7, 28.3, 28, 5, 30.1, 30.4, 39.3, 39.8, 46.3, 46.5, 55.7, 56.1, 77.9, 78.8, 83.4, 108.5, 111.8, 112.2, 112.5, 113.1, 114.1, 115.0, 115.1, 115.9, 119.3, 123.4, 123.7, 123.9, 126.4, 127.4, 127.5, 127.6, 132.3, 133.8, 135.1, 135.9, 137.8, 139.8, 141.3, 145.0, 150.5, 154.9, 156.0, 156.9, 160.9, 162.3, 165.0, 165.4. UV/Vis (toluene): λ (ε, M–1cm–1) = 796 (61 200), 549 (6 300), 372 (39 200) nm. UV/Vis (THF): λ (ε, M–1cm–1) = 763 (52 600), 541 (3 400), 370 (38 900) nm. MS (EI): m/z (%) calcd for C65H63N7O5S2: 1085.2 (100), 1086.44 (71); found: 1085.2 (100), 1086.2 (75). Anal. Calcd for C65H63N7O5S2 (1085.43): C, 71.86; H, 5.85, N, 9.03. Found: C, 71.60; H, 5.69; N, 8.77.
- 28 Iqbal A, Jost M, Kirchmayr R, Pfenninger J, Rochat A, Wallquist O. Bull. Soc. Chim. Belg. 1988; 97: 615
- 29 Hablot D, Harriman A, Ziessel R. Angew. Chem. Int. Ed. 2011; 50: 7833
- 30 Lakowicz JR. In Principles of Fluorescence Spectroscopy 2006
- 31 Niu S, Ulrich G, Retailleau P, Ziessel R. Org. Lett. 2011; 13: 4996
- 32 Jayamurugan G, Gisselbrecht J.-P, Boudon C, Schoenebeck F, Schweizer WB, Bernet B, Diederich F. Chem. Commun. 2011; 47: 4520
- 33 These values were calculated by using the E 00 values of dyes 5 and 7 obtained by using the intersection between the absorption and emission at respectively 623 and 655 nm and the shift in absorption of dyes 6 and 8 with respect to the corresponding dyes 5 and 7.
For selected recent examples, see: