Synthesis 2014; 46(17): 2258-2271
DOI: 10.1055/s-0034-1378373
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Electrophilic Amination Reactions

Martin Corpet
Laboratoire de Chimie Moléculaire, Ecole Polytechnique/CNRS, Route de Saclay, 91128 Palaiseau Cedex, France   Fax: +33(1)69334440   Email: Corinne.gosmini@polytechnique.edu
,
Corinne Gosmini*
Laboratoire de Chimie Moléculaire, Ecole Polytechnique/CNRS, Route de Saclay, 91128 Palaiseau Cedex, France   Fax: +33(1)69334440   Email: Corinne.gosmini@polytechnique.edu
› Author Affiliations
Further Information

Publication History

Received: 26 March 2014

Accepted after revision: 09 June 2014

Publication Date:
15 July 2014 (online)


Abstract

Electrophilic nitrogen sources are an increasingly popular class of reagents for the formation of C–N bonds. Recently, a significant number of useful methodologies have been reported, in particular, examples using transition-metal catalysis. This review summarizes the latest developments in this field, with a focus on very recent advances.

1 Introduction

2 Reactions with Stoichiometric Organometallic Reagents

2.1 Organoboron Nucleophiles

2.2 Zirconium Derivatives

2.3 Silicon Derivatives

2.4 Grignard Reagents

2.5 Organozinc Reagents

3 Catalytic Organometallic Species

3.1 C–H Activation Reactions

3.2 Heterocycle Synthesis via Addition/Amination Sequences

3.3 Narasaka–Heck (or Amino-Heck) Reactions

4 Enolates as Nucleophiles

5 Conclusion

 
  • References

  • 2 Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 4a Brown HC, Hedkamp WR, Breuer E, Murphy WS. J. Am. Chem. Soc. 1964; 86: 3565
    • 4b Brown HC, Kim K.-W, Srebnik M, Bakthan S. Tetrahedron 1987; 43: 4071
    • 4c Rangaishenvi MV, Singaram B, Brown HC. J. Org. Chem. 1991; 56: 3286
  • 5 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 3642
  • 6 Rucker RP, Whittaker AM, Dang H, Lalic G. Angew. Chem. Int. Ed. 2012; 51: 3953
  • 7 Rucker RP, Whittaker AM, Dang H, Lalic G. J. Am. Chem. Soc. 2012; 134: 6571
  • 8 Matsuda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2013; 135: 4934
  • 9 Sakae R, Matsuda N, Hirano K, Satoh T, Miura M. Org Lett. 2014; 16: 1228
  • 10 Xiao Q, Tian L, Tan R, Xia Y, Qiu D, Zhang Y, Wang J. Org. Lett. 2012; 14: 4230
  • 11 Mlynarski NL, Karns AS, Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
  • 12 Zhu C, Li G, Ess DH, Falck JR, Kürti L. J. Am. Chem. Soc. 2012; 134: 18253
  • 13 Pronin SV, Greg Tabor M, Jansen DJ, Shenvi RA. J. Am. Chem. Soc. 2012; 134: 2012
  • 14 Yan X, Chen C, Zhou Y, Xi C. Org. Lett. 2012; 14: 4750
  • 15 Liu H, Yan X, Chen C, Liu Q, Xi C. Chem. Commun. 2013; 49: 5513
  • 16 Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2013; 15: 172
  • 17 Tsutsui H, Hayashi Y, Narasaka K. Chem. Lett. 1997; 26: 317
  • 18 Campbell MJ, Johnson JS. Org. Lett. 2007; 9: 1521
  • 19 Bermann AM, Johnson JS. Synlett 2005; 1799
  • 20 Barker TJ, Jarvo ER. Angew. Chem. Int. Ed. 2011; 50: 8325
  • 21 Mizutani Y, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Tetrahedron Lett. 2012; 53: 5903
  • 23 Barker TJ, Jarvo ER. J. Am. Chem. Soc. 2009; 131: 15598
    • 24a Fillon H, Gosmini C, Perichon J. J. Am. Chem. Soc. 2003; 125: 3867
    • 24b Kazmierski I, Gosmini C, Paris J.-M, Perichon J. Tetrahedron Lett. 2003; 44: 6417
    • 24c Gosmini C, Amatore M, Claudel S, Perichon J. Synlett 2005; 2171
  • 25 Qian X, Yu Z, Auffrant A, Gosmini C. Chem. Eur. J. 2013; 19: 6225

    • For selected general reviews on C–H bond activation, see:
    • 26a Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 26b Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 26c Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740

    • For selected reviews on C–H bond amination, see ref. 3b and:
    • 26d Du Bois J. Org. Process Res. Dev. 2011; 15: 758
    • 26e Stokes BJ, Driver TG. Eur. J. Org. Chem. 2011; 4071
    • 26f Collet F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061
    • 27a Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 3676
    • 27b Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 27c Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
    • 27d Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
  • 28 Ng K.-H, Zhou Z, Yu W.-Y. Org Lett. 2012; 14: 272
  • 29 Grohmann C, Wang H, Glorius F. Org. Lett. 2012; 14: 656
  • 30 Grohmann C, Wang H, Glorius F. Org. Lett. 2013; 15: 3014
  • 31 Ng K.-H, Zhou Z, Yu W.-Y. Chem. Commun. 2013; 49: 7031
  • 32 Ryu J, Shin K, Park SH, Kim JY, Chang S. Angew. Chem. Int. Ed. 2012; 51: 9904
  • 33 Tang R.-J, Luo C.-P, Yang L, Li C.-J. Adv. Synth. Catal. 2013; 355: 869
  • 34 Sun K, Li Y, Xiong T, Zhang J, Zhang Q. J. Am. Chem. Soc. 2011; 133: 1694
  • 35 Yotphan S, Beukeaw D, Reutrakul V. Tetrahedron 2013; 69: 6627
  • 36 Shang M, Zeng S.-H, Sun S.-Z, Dai H.-X, Yu J.-Q. Org. Lett. 2013; 15: 5286
  • 37 Yoo E.-U, Ma S, Mei T.-S, Chan KS. L, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7652
    • 38a Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 38b Huestis MP, Chan L, Stuart DR, Fagnou K. Angew. Chem. Int. Ed. 2011; 50: 1338
    • 38c Chen J, Song G, Pan C.-L, Li X. Org. Lett. 2010; 12: 5426
    • 38d Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
    • 38e Fukutani T, Umeda N, Hirano K, Satoh T, Miura M. Chem. Commun. 2009; 5141
    • 38f Morimoto K, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 2068
    • 38g Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 38h Mochida S, Umeda N, Hirano K, Satoh T, Miura M. Chem. Lett. 2010; 39: 744
    • 38i Guoyong S, Chen D, Pan C.-L, Crabtree RH, Li X. J. Org. Chem. 2010; 75: 7487
    • 38j Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 38k Su Y, Zhao M, Han K, Song G, Li X. Org. Lett. 2010; 12: 5462
  • 39 Too PC, Chua SH, Wong SH, Chiba S. J. Org. Chem. 2011; 76: 6159
  • 40 Zhang X, Chen D, Zhao M, Zhao J, Jia A, Li X. Adv. Synth. Catal. 2011; 353: 719
  • 41 Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
  • 42 Hyster TK, Rovis T. Chem. Commun. 2011; 47: 11846
  • 43 Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
  • 44 Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318
  • 45 Chuang S.-C, Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 5750
  • 46 Li B, Feng H, Xu S, Wang B. Chem. Eur. J. 2011; 17: 12573
  • 47 Ackermann L, Lygin AV, Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
  • 48 Li B, Ma J, Wang N, Feng H, Xu S, Wang B. Org. Lett. 2012; 14: 736
  • 49 Matsuda N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2012; 77: 617
    • 50a Tsutsui H, Narasaka K. Chem. Lett. 1999; 28: 45
    • 50b Tsutsui H, Kitamura M, Narasaka K. Bull. Chem. Soc. Jpn. 2002; 75: 1451

    • For reviews, see:
    • 50c Kitamura M, Narasaka K. Chem. Rec. 2002; 2: 268
    • 50d Narasaka K, Kitamura M. Eur. J. Org. Chem. 2005; 4505
  • 51 Faulkner A, Bower JF. Angew. Chem. Int. Ed. 2012; 51: 1675
  • 52 For a review, see: Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637

    • For reviews, see:
    • 53a Mukerjee S, Yang JW, Hoffman S, List B. Chem. Rev. 2007; 107: 5471
    • 53b Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
  • 54 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 11827
  • 55 Miura T, Morimoto M, Murakami M. Org. Lett. 2012; 14: 5214
  • 56 Sandoval D, Frazier CP, Bugarin A, Read de Alaniz J. J. Am. Chem. Soc. 2012; 134: 18948
    • 57a Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 1790
    • 57b List B. J. Am. Chem. Soc. 2002; 124: 5656
  • 58 Tanaka T, Akagawa K, Mitsuda M, Kudo K. Adv. Synth. Catal. 2013; 355: 294
  • 59 Lim YJ, Kim DY. Bull. Korean Chem. Soc. 2013; 34: 1955