RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(14): 2009-2012
DOI: 10.1055/s-0034-1378354
DOI: 10.1055/s-0034-1378354
letter
Copper-Catalyzed Oxidative Electrophilic Carbofunctionalization of Acrylamides for the Synthesis of Oxindoles
Weitere Informationen
Publikationsverlauf
Received: 05. April 2014
Accepted after revision: 27. Mai 2014
Publikationsdatum:
28. Juli 2014 (online)
Abstract
A novel and efficient copper-catalyzed tandem oxidative cyclization of arylacrylamides with diaryliodonium salts is reported. This reaction provides a novel approach for the synthesis of oxindoles and various functional groups were well tolerated.
Key words
copper-catalyzed - acrylamides - diphenyliodonium triflate - oxindoles - electrophilic arylationSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Singhand GS, Desta ZY. Chem. Rev. 2012; 112: 6104
- 1b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 1c Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
- 1d Trost BM, Brennan MK. Synthesis 2009; 3003
- 1e Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
- 1f Kitamura H, Kato A, Esaki T. Eur. J. Pharmacol. 2001; 418: 225
- 2a Lin H, Danishefsky SJ. Angew. Chem. 2003; 115: 38
-
2b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 2c Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
- 2d Lingam PA. P, Shanmugam P, Selvakumar K. Synlett 2012; 23: 278
- 2e Lingam PA. P, Shanmugam P, Mandal AB. Synlett 2012; 23: 2903
- 2f Lee HJ, Kang SH, Kim DY. Synlett 2011; 1559
- 3a Jia Y.-X, Kndig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
- 3b Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
- 3c Broggini G, Barbera V, Beccalli EM, Borsini E, Galli S, Lanza G, Zecchi G. Adv. Synth. Catal. 2012; 354: 159
- 3d Perry A, Taylor RJ. K. Chem. Commun. 2009; 3249
- 3e An G, Zhou W, Zhang G, Sun H, Han J, Pan Y. Org. Lett. 2010; 12: 4
- 4a Wei WT, Zhou MB, Fan JH, Liu W, Song RJ, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
- 4b Li YM, Sun M, Wang HL, Tian Q.-P, Yang SD. Angew. Chem. Int. Ed. 2013; 52: 3972
- 4c Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 5672
- 4d Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
- 4e Zhou MB, Song RJ, Ouyang XH, Liu Y, Wei WT, Deng G.-B, Li JH. Chem. Sci. 2013; 4: 2690
- 4f Li XQ, Xu XS, Hu P, Xiao XQ, Zhou C. J. Org. Chem. 2013; 78: 7343
- 4g Li Y.-M, Wei XH, Li XA, Yang SD. Chem. Commun. 2013; 49: 11701
- 4h Majumdar KC, Karunakar GV, Sinha B. Synthesis 2012; 44: 2475
- 4i Zhang J.-L, Liu Y, Song R.-J, Jiang G.-F, Li J.-H. Synlett 2014; 25: 1031
-
5a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 5b Zhou B, Hou W, Yang Y, Feng H, Li YC. Org. Lett. 2014; 16: 1322
- 5c Vaddula BR, Saha A, Leazer J, Varma RS. Green Chem. 2012; 14: 2133
- 5d Kang SK, Yoon SK, Kim YM. Org. Lett. 2001; 3: 2697
- 5e Jalalian N, Ishikawa EE, Silva LF, Olofsson B. Org. Lett. 2011; 13: 1552
- 5f Petersen TB, Khan R, Olofsson B. Org. Lett. 2011; 13: 3462
- 5g Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
- 5h Kraszkiewicz L, Skulski L. Synthesis 2008; 2373
-
5i Xu J, Zhang PB, Gao YZ, Chen YY, Tang G, Zhao YF. J. Org. Chem. 2013; 78: 8176
-
5j Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
- 5k Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
- 5l Liu YX, Xue D, Wang JD, Zhao CJ, Zou QZ, Wang C, Xiao J. Synlett 2013; 24: 507
- 5m During the preparation of our manuscript, similar research was reported: Zhou B, Hou W, Yang Y, Feng H, Li YC. Org. Lett. 2014; 16: 1322
- 6 Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
- 7a Walkinshaw AJ, Xu W, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 12532
- 7b Suero MG, Bayle ED, Collins BS. L, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 5332
- 8 Cahard E, Bremeyer N, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 9284
- 9a Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
- 9b Wang Y, Su X, Chen C. Synlett 2013; 24: 2619
- 10 Typical Procedure: An oven-dried 10-mL Schlenk tube containing CuCl (4.5 mg, 15 mol%), N-arylacrylamide 1a (90.3 mg, 0.3 mmol), and diphenyliodonium triflate (2a; 154.8 mg, 0.36 mmol) was evacuated and purged with nitrogen three times. DTBP (68.8 mg, 0.36 mmol) in freshly distilled CH2Cl2 (2.0 mL) was added to the system at r.t. The reaction mixture was heated with stirring at 60 °C for 24 h. The reaction mixture was allowed to cool to ambient temperature, and then transferred to a round-bottom flask. Silica gel (3.0 g) was added, and the solvent was removed under reduced pressure to afford a free-flowing powder. This powder was then dry-loaded onto a silica gel column and purified by flash chromatography using petroleum ether–EtOAc (20:1) as the eluent to give the product 3a. Yield: 75 mg (81%). MS (ESI): m/z = 274.0 [M + Na]+. 1H NMR (400 MHz, CDCl3): δ = 7.03–7.18 (m, 6 H), 6.83–6.85 (m, 2 H), 6.62 (d, J = 7.7 Hz, 1 H), 3.12 (d, J = 13.0 Hz, 1 H), 3.01 (d, J = 13.0 Hz, 1 H), 2.98 (s, 3 H), 1.47 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 179.9, 142.9, 136.0, 132.9, 129.7, 127.6, 126.3, 123.2, 121.9, 107.6, 50.0, 44.4, 26.7, 22.6.
For some selected examples, see:
For some selected examples, see:
For the difunctionalization of alkenes leading to oxindoles through a radical process, see: