Synlett 2014; 25(14): 2078-2082
DOI: 10.1055/s-0034-1378334
letter
© Georg Thieme Verlag Stuttgart · New York

Ultrasound-Assisted, Transition-Metal-Free Synthesis of Diaryl Tellurides from Aryl Boronic Acids: A Possible Free-Radical Mechanism

Balaji Mohan
Department of Chemistry, Pusan National University, Busan, 609735, South Korea   Fax: +82(51)9805200   Email: chemistry@pusan.ac.kr
,
Sori Hwang
Department of Chemistry, Pusan National University, Busan, 609735, South Korea   Fax: +82(51)9805200   Email: chemistry@pusan.ac.kr
,
Seongwan Jang
Department of Chemistry, Pusan National University, Busan, 609735, South Korea   Fax: +82(51)9805200   Email: chemistry@pusan.ac.kr
,
Kang Hyun Park*
Department of Chemistry, Pusan National University, Busan, 609735, South Korea   Fax: +82(51)9805200   Email: chemistry@pusan.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 09 May 2014

Accepted after revision: 27 May 2014

Publication Date:
07 July 2014 (online)


Abstract

The first rapid, catalyst-free synthesis of diphenyl tellurides from readily available diphenyl ditelluride and aryl boronic acids is reported. The high efficiency, general applicability and wide substrate scope, including heterocycles and other functional groups, make this method superior. The technique, which utilizes dimethyl sulfoxide solvent and ultrasound promotion, opens the door for the synthesis of diphenyl tellurides at 100 °C in air within a short time in high yields.

 
  • References and Notes

    • 1a Ericsson C, Engman L. J. Org. Chem. 2004; 69: 5143
    • 1b Cougnon F, Feray L, Bazin S, Bertrand MP. Tetrahedron 2007; 63: 11959
    • 2a Yamago S, Lida K, Yoshida JI. J. Am. Chem. Soc. 2002; 124: 2874
    • 2b Yamago S. J. Polym. Sci., Part A: Polym. Chem. 2006; 44: 1
    • 2c Singh AK. Proc.–Indian Acad. Sci., Chem. Sci. 2002; 114: 357
    • 3a Mugesh G, Singh HB. Acc. Chem. Res. 2002; 35: 226
    • 3b Wirth T. Angew. Chem. Int. Ed. 2000; 39: 3740
    • 3c Wirth T In Topics in Current Chemistry . Meijere A, Houk KN, Kessler H, Lehn J.-M, Ley SV, Schreiber SL, Thiem J, Trost BM, Vogtle F, Yamamoto H. Springer; Berlin: 2000: 208
    • 4a Seng H.-L, Tiekink ER. T. Appl. Organomet. Chem. 2012; 26: 655
    • 4b Kanda T, Engman L, Cotgreave IA, Powis G. J. Org. Chem. 1999; 64: 8261
    • 4c Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 5a Gujadhur RK, Venkataraman D. Tetrahedron Lett. 2003; 44: 81
    • 5b Kumar S, Engman L. J. Org. Chem. 2006; 71: 5400
    • 5c Zheng B, Gong H.-J, Xu Y. Tetrahedron 2013; 69: 5342
    • 5d Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
    • 6a Wang M, Ren K, Wang L. Adv. Synth. Catal. 2009; 351: 1586
    • 6b Kundu D, Mukherjee N, Ranu BC. RSC Advances 2013; 3: 117
    • 6c Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 6d Ricordi VG, Freitas CS, Perin G, Lenardo EJ, Jacob RG, Savegnago L, Alves D. Green Chem. 2012; 14: 1030
    • 6e Ren K, Wang M, Wang L. Org. Biomol. Chem. 2009; 7: 4858
  • 7 Park JC, Kim AY, Kim JY, Park S, Park KH, Song H. Chem. Commun. 2012; 48: 8484
  • 8 Mohan B, Hwang S, Woo H, Park KH. Tetrahedron 2014; 70: 2699
  • 10 Zhang S, Karra K, Koe A, Jin J. Tetrahedron Lett. 2013; 54: 2452
  • 11 General Description: Reagents were purchased from Aldrich Chemical Co., TCI and Strem Chemical Co. and were used as received. Reaction products were analyzed by GC-MS (Shimadzu-QP2010 SE), 1H NMR and 13C NMR (Varian Mercury Plus, 300 MHz). Chemical shift values are recorded as parts per million relative to tetramethylsilane as internal standard, unless otherwise indicated, and coupling constants are given in Hertz. A Fisher Scientific Sonic Dismembrator (model 500, 230 V, 50/60 Hz) was used for ultrasonication. Cross-Coupling Reaction; General Procedure: Diphenyl ditelluride (0.12 mmol, 50 mg) and phenylboronic acid (0.27 mmol, 32 mg) were dissolved in DMSO (3 mL) followed by ultrasonication at 100 °C until color change from dark-orange to light-yellow (sometimes colorless) was observed. After usual work up, the crude product was analyzed by GC-MS and then purified by silica gel column chromatography. The purified products were characterized by 1H and 13C NMR spectroscopy. All synthesized compounds are known and their spectroscopic data were consistent with reported values. 4-Methoxyphenyl Phenyl Telluride: 6a 1H NMR (300 MHz, CDCl3): δ = 7.72 (d, J = 9 Hz, 2 H), 7.59–7.56 (m, 2 H), 7.21–7.17 (m, 3 H), 6.82 (d, J = 8.7 Hz, 2 H), 3.80 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ = 160.0, 141.3, 136.6, 129.5, 127.4, 115.8, 115.7, 103.2, 55.3. Diphenyl Telluride: 10 1H NMR (300 MHz, CDCl3): δ = 7.71 (d, J = 6.6 Hz, 4 H), 7.35–7.19 (m, 6 H); 13C NMR (75 MHz, CDCl3): δ = 138.2, 129.7, 128.1, 114. 4-Tolyl Phenyl Telluride: 6b 1H NMR (300 MHz, CDCl3): δ = 7.64 (d, J = 7.8 Hz, 3 H), 7.29–7.17 (m, 4 H), 7.07 (d, J = 7.5 Hz, 2 H), 2.35 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ = 138.9, 137.5, 137.4, 130.6, 129.7, 127.7, 115.4, 110.5, 21.5. 4-Trifluoromethyl Phenyl Phenyl Telluride: 5d 1H NMR (300 MHz, CDCl3): δ = 7.82 (m, 2 H), 7.68 (m, 2 H), 7.42 (m, 3 H), 7.28 (m, 2 H); 13C NMR (75 MHz, CDCl3): δ = 139.6, 138.2, 136.6, 130.0, 129.7, 128.9, 126.1 (q), 122.3,113.5. 4-Cyanophenyl Phenyl Telluride: 5d 1H NMR (300 MHz, CDCl3): δ = 7.85–7.82 (m, 2 H), 7.56 (d, J = 8.4 Hz, 2 H), 7.42–7.29 (m, 5 H); 13C NMR (75 MHz, CDCl3): δ = 140.3, 135.9, 132.4, 130.0, 129.4, 124.5, 118.9, 113.0, 110.8. 4-Fluorophenyl Phenyl Telluride: 6b 1H NMR (300 MHz, CDCl3): δ = 7.74–7.63 (m, 4 H), 7.31–7.19 (m, 3 H), 6.99–6.90 (m, 2 H); 13C NMR (75 MHz, CDCl3): δ = 164.9, 161.6, 140.7, 138.2, 132.1, 129.8, 129.7, 128.0, 117.0, 114.8. 2-Naphthyl Phenyl Telluride: 6b 1H NMR (300 MHz, CDCl3): δ = 8.25 (d, J = 6.3 Hz, 1 H), 7.82–7.66 (m, 7 H), 7.49–7.45 (m, 2 H), 7.32–7.19 (m, 3 H); 13C NMR (75 MHz, CDCl3): δ = 138.1, 138.0, 137.9, 134.9, 134.5, 132.8, 129.7, 128.8, 128.0, 127.9, 127.6, 126.6, 126.5, 115.0, 112.2. 4-Ethoxycarbonylphenyl Phenyl Telluride: 6b 1H NMR (300 MHz, CDCl3): δ = 7.80 (m, 3 H), 7.62 (d, J = 8.1 Hz, 2 H), 7.40–7.25 (m, 4 H), 4.33 (q, J = 6.9, 7.2 Hz, 2 H), 1.37 (t, J = 7.2 Hz, 3 H); 13C NMR (75 MHz, CDCl3): δ = 166.6, 139.5, 136.2, 130.2, 130.0, 129.7, 128.8, 123.1, 113.7, 61.1, 14.5. 3-Thiophenyl Phenyl Telluride: 6b 1H NMR (300 MHz, CDCl3): δ = 7.72–7.70 (m, 1 H), 7.61–7.57 (m, 3 H), 7.31–7.16 (m, 4 H); 13C NMR (75 MHz, CDCl3): δ = 138.2, 137.0, 136.9, 136.7, 134.7, 129.7, 129.6, 128.0, 127.7, 127.4, 115.4, 104.0.