Semin Reprod Med 2014; 32(05): 346-357
DOI: 10.1055/s-0034-1376354
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Biological Roles of Uterine Glands in Pregnancy

Thomas E. Spencer
1   Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. Juni 2014 (online)

Abstract

All mammalian uteri contain glands in the endometrium that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). This review summarizes information related to the biological roles of uterine glands and their secretions in blastocyst/conceptus survival and implantation, uterine receptivity, and stromal cell decidualization in humans and animal models. The infertility and recurrent pregnancy loss observed in the ovine uterine gland knockout (UGKO) model unequivocally supports a primary role for uterine glands and, by inference, their secretions present in uterine luminal fluid in survival and development of the conceptus. Further, studies with mutant and progesterone-induced UGKO mice found that uterine glands and their secretions are required for establishment of uterine receptivity and blastocyst implantation as well as stromal cell decidualization. Similarly in humans, uterine glands and their secretory products are likely critical regulators of blastocyst implantation, uterine receptivity, and conceptus growth and development during the first trimester. Circumstantial evidence suggests that deficient glandular activity may be a causative factor in pregnancy failure and complications in humans. Thus, an increased understanding of uterine gland biology is important for diagnosis, prevention, and treatment of fertility and pregnancy problems in mammals.

 
  • References

  • 1 Wooding FBP, Burton GJ. Comparative Placentation: Structures, Functions and Evolution. Berlin: Springer; 2008
  • 2 Gray CA, Bartol FF, Tarleton BJ , et al. Developmental biology of uterine glands. Biol Reprod 2001; 65 (5) 1311-1323
  • 3 Bartol FF, Wiley AA, Floyd JG , et al. Uterine differentiation as a foundation for subsequent fertility. J Reprod Fertil Suppl 1999; 54: 287-302
  • 4 Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Mol Hum Reprod 2013; 19 (9) 547-558
  • 5 Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol 2012; 354 (1-2) 34-53
  • 6 Spencer TE, Hayashi K, Hu J, Carpenter KD. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol 2005; 68: 85-122
  • 7 Zhang S, Lin H, Kong S , et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34 (5) 939-980
  • 8 Filant J, Spencer TE. Endometrial glands are essential for blastocyst implantation and decidualization in the mouse uterus. Biol Reprod 2013; 88 (4) 93
  • 9 Cooke PS, Ekman GC, Kaur J , et al. Brief exposure to progesterone during a critical neonatal window prevents uterine gland formation in mice. Biol Reprod 2012; 86 (3) 63
  • 10 Gray CA, Taylor KM, Ramsey WS , et al. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod 2001; 64 (6) 1608-1613
  • 11 Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Implantation mechanisms: insights from the sheep. Reproduction 2004; 128 (6) 657-668
  • 12 Spencer TE, Sandra O, Wolf E. Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135 (2) 165-179
  • 13 Hue I, Degrelle SA, Turenne N. Conceptus elongation in cattle: genes, models and questions. Anim Reprod Sci 2012; 134 (1-2) 19-28
  • 14 Guillomot M. Cellular interactions during implantation in domestic ruminants. J Reprod Fertil Suppl 1995; 49: 39-51
  • 15 Bartol FF, Wiley AA, Goodlett DR. Ovine uterine morphogenesis: histochemical aspects of endometrial development in the fetus and neonate. J Anim Sci 1988; 66 (5) 1303-1313
  • 16 Bartol FF, Wiley AA, Coleman DA, Wolfe DF, Riddell MG. Ovine uterine morphogenesis: effects of age and progestin administration and withdrawal on neonatal endometrial development and DNA synthesis. J Anim Sci 1988; 66 (11) 3000-3009
  • 17 Allison Gray C, Bartol FF, Taylor KM , et al. Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle. Biol Reprod 2000; 62 (2) 448-456
  • 18 Gray CA, Bazer FW, Spencer TE. Effects of neonatal progestin exposure on female reproductive tract structure and function in the adult ewe. Biol Reprod 2001; 64 (3) 797-804
  • 19 Gray CA, Burghardt RC, Johnson GA, Bazer FW, Spencer TE. Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 2002; 124 (2) 289-300
  • 20 Gray CA, Taylor KM, Bazer FW, Spencer TE. Mechanisms regulating norgestomet inhibition of endometrial gland morphogenesis in the neonatal ovine uterus. Mol Reprod Dev 2000; 57 (1) 67-78
  • 21 Bazer FW. Uterine protein secretions: Relationship to development of the conceptus. J Anim Sci 1975; 41 (5) 1376-1382
  • 22 Dorniak P, Bazer FW, Spencer TE. Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation. J Anim Sci 2013; 91 (4) 1627-1638
  • 23 Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 2010; 16 (3) 135-152
  • 24 Fléchon JE, Guillomot M, Charlier M, Fléchon B, Martal J. Experimental studies on the elongation of the ewe blastocyst. Reprod Nutr Dev 1986; 26 (4) 1017-1024
  • 25 Koch JM, Ramadoss J, Magness RR. Proteomic profile of uterine luminal fluid from early pregnant ewes. J Proteome Res 2010; 9 (8) 3878-3885
  • 26 Forde N, Lonergan P. Transcriptomic analysis of the bovine endometrium: What is required to establish uterine receptivity to implantation in cattle?. J Reprod Dev 2012; 58 (2) 189-195
  • 27 Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18 (12) 1754-1767
  • 28 Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 2006; 7 (3) 185-199
  • 29 Ramathal CY, Bagchi IC, Taylor RN, Bagchi MK. Endometrial decidualization: of mice and men. Semin Reprod Med 2010; 28 (1) 17-26
  • 30 Wetendorf M, DeMayo FJ. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol Cell Endocrinol 2012; 357 (1-2) 108-118
  • 31 González IM, Martin PM, Burdsal C , et al. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol 2012; 361 (2) 286-300
  • 32 Das SK. Regional development of uterine decidualization: molecular signaling by Hoxa-10. Mol Reprod Dev 2010; 77 (5) 387-396
  • 33 Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A 1991; 88 (24) 11408-11412
  • 34 Stewart CL, Kaspar P, Brunet LJ , et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359 (6390) 76-79
  • 35 Jeong JW, Kwak I, Lee KY , et al. Foxa2 is essential for mouse endometrial gland development and fertility. Biol Reprod 2010; 83 (3) 396-403
  • 36 Franco HL, Dai D, Lee KY , et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J 2011; 25 (4) 1176-1187
  • 37 Dunlap KA, Filant J, Hayashi K , et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol Reprod 2011; 85 (2) 386-396
  • 38 Jeong JW, Lee HS, Franco HL , et al. beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene 2009; 28 (1) 31-40
  • 39 Franco HL, Lee KY, Rubel CA , et al. Constitutive activation of smoothened leads to female infertility and altered uterine differentiation in the mouse. Biol Reprod 2010; 82 (5) 991-999
  • 40 Shelton DN, Fornalik H, Neff T , et al. The role of LEF1 in endometrial gland formation and carcinogenesis. PLoS ONE 2012; 7 (7) e40312
  • 41 Sone M, Oyama K, Mohri Y, Hayashi R, Clevers H, Nishimori K. LGR4 expressed in uterine epithelium is necessary for uterine gland development and contributes to decidualization in mice. FASEB J 2013; 27 (12) 4917-4928
  • 42 Bigsby RM, Cunha GR. Effects of progestins and glucocorticoids on deoxyribonucleic acid synthesis in the uterus of the neonatal mouse. Endocrinology 1985; 117 (6) 2520-2526
  • 43 Filant J, Zhou H, Spencer TE. Progesterone inhibits uterine gland development in the neonatal mouse uterus. Biol Reprod 2012; 86 (5) 146 , 1–9
  • 44 Niklaus AL, Pollard JW. Mining the mouse transcriptome of receptive endometrium reveals distinct molecular signatures for the luminal and glandular epithelium. Endocrinology 2006; 147 (7) 3375-3390
  • 45 Evans GE, Martínez-Conejero JA, Phillipson GT , et al. Gene and protein expression signature of endometrial glandular and stromal compartments during the window of implantation. Fertil Steril 2012; 97 (6) 1365-1373 , e1–e2
  • 46 Filant J, Spencer TE. Cell-specific transcriptional profiling reveals candidate mechanisms regulating development and function of uterine epithelia in mice. Biol Reprod 2013; 89 (4) 86
  • 47 Filant J, Lydon JP, Spencer TE. Integrated chromatin immunoprecipitation sequencing and microarray analysis identifies FOXA2 target genes in the glands of the mouse uterus. FASEB J 2014; 28 (1) 230-243
  • 48 Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005; 64 (4) 992-1006
  • 49 Martin PM, Sutherland AE, Van Winkle LJ. Amino acid transport regulates blastocyst implantation. Biol Reprod 2003; 69 (4) 1101-1108
  • 50 Houghton FD, Hawkhead JA, Humpherson PG , et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 2002; 17 (4) 999-1005
  • 51 Burton GJ, Scioscia M, Rademacher TW. Endometrial secretions: creating a stimulatory microenvironment within the human early placenta and implications for the aetiopathogenesis of preeclampsia. J Reprod Immunol 2011; 89 (2) 118-125
  • 52 Burton GJ, Jauniaux E, Charnock-Jones DS. Human early placental development: potential roles of the endometrial glands. Placenta 2007; 28 (Suppl A): S64-S69
  • 53 Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 2000; 141 (12) 4365-4372
  • 54 Chen W, Han BC, Wang RC, Xiong GF, Peng JP. Role of secretory protease inhibitor SPINK3 in mouse uterus during early pregnancy. Cell Tissue Res 2010; 341 (3) 441-451
  • 55 Lejeune B, Van Hoeck J, Leroy F. Transmitter role of the luminal uterine epithelium in the induction of decidualization in rats. J Reprod Fertil 1981; 61 (1) 235-240
  • 56 Cheong Y, Boomsma C, Heijnen C, Macklon N. Uterine secretomics: a window on the maternal-embryo interface. Fertil Steril 2013; 99 (4) 1093-1099
  • 57 Salamonsen LA, Edgell T, Rombauts LJ , et al. Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery. Fertil Steril 2013; 99 (4) 1086-1092
  • 58 Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol 2010; 54 (2–3) 303-312
  • 59 Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 2002; 87 (6) 2954-2959
  • 60 Red-Horse K, Zhou Y, Genbacev O , et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 2004; 114 (6) 744-754
  • 61 Hamilton WJ, Boyd JD. Development of the human placenta in the first three months of gestation. J Anat 1960; 94: 297-328
  • 62 Hamilton WJ, Gladstone RJ. A presomite human embryo (Shaw): the implantation. J Anat 1942; 76 (Pt 2) 187-203
  • 63 Hustin J, Schaaps JP. Echographic [corrected] and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 1987; 157 (1) 162-168
  • 64 Jauniaux E, Gulbis B, Burton GJ. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus—a review. Placenta 2003; 24 (Suppl A): S86-S93
  • 65 Foidart JM, Hustin J, Dubois M, Schaaps JP. The human placenta becomes haemochorial at the 13th week of pregnancy. Int J Dev Biol 1992; 36 (3) 451-453
  • 66 Hempstock J, Cindrova-Davies T, Jauniaux E, Burton GJ. Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy: a morphological and immunohistochemical study. Reprod Biol Endocrinol 2004; 2: 58
  • 67 Kane MT, Morgan PM, Coonan C. Peptide growth factors and preimplantation development. Hum Reprod Update 1997; 3 (2) 137-157
  • 68 Hannan NJ, Stephens AN, Rainczuk A, Hincks C, Rombauts LJ, Salamonsen LA. 2D-DiGE analysis of the human endometrial secretome reveals differences between receptive and nonreceptive states in fertile and infertile women. J Proteome Res 2010; 9 (12) 6256-6264
  • 69 Salamonsen LA, Hannan NJ, Dimitriadis E. Cytokines and chemokines during human embryo implantation: roles in implantation and early placentation. Semin Reprod Med 2007; 25 (6) 437-444
  • 70 Vilella F, Ramirez LB, Simón C. Lipidomics as an emerging tool to predict endometrial receptivity. Fertil Steril 2013; 99 (4) 1100-1106
  • 71 Dimitriadis E, Stoikos C, Stafford-Bell M , et al. Interleukin-11, IL-11 receptoralpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J Reprod Immunol 2006; 69 (1) 53-64
  • 72 Hannan NJ, Paiva P, Meehan KL, Rombauts LJ, Gardner DK, Salamonsen LA. Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. Endocrinology 2011; 152 (12) 4948-4956
  • 73 Boomsma CM, Kavelaars A, Eijkemans MJ , et al. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum Reprod 2009; 24 (6) 1427-1435
  • 74 van der Gaast MH, Beier-Hellwig K, Fauser BC, Beier HM, Macklon NS. Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates. Reprod Biomed Online 2003; 7 (1) 105-109
  • 75 Demir R, Kayisli UA, Celik-Ozenci C, Korgun ET, Demir-Weusten AY, Arici A. Structural differentiation of human uterine luminal and glandular epithelium during early pregnancy: an ultrastructural and immunohistochemical study. Placenta 2002; 23 (8-9) 672-684
  • 76 Bell SC. Secretory endometrial/decidual proteins and their function in early pregnancy. J Reprod Fertil Suppl 1988; 36: 109-125
  • 77 Seppälä M, Riittinen L, Julkunen M , et al. Structural studies, localization in tissue and clinical aspects of human endometrial proteins. J Reprod Fertil Suppl 1988; 36: 127-141
  • 78 Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 2000; 157 (6) 2111-2122
  • 79 Leese HJ. What does an embryo need?. Hum Fertil (Camb) 2003; 6 (4) 180-185
  • 80 Watkins AJ, Papenbrock T, Fleming TP. The preimplantation embryo: handle with care. Semin Reprod Med 2008; 26 (2) 175-185
  • 81 Bazer FW, Spencer TE, Johnson GA, Burghardt RC. Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed) 2011; 3: 745-767
  • 82 Seppälä M, Julkunen M, Riittinen L, Koistinen R. Endometrial proteins: a reappraisal. Hum Reprod 1992; 7 (Suppl. 01) 31-38
  • 83 Roberts RM, Fisher SJ. Trophoblast stem cells. Biol Reprod 2011; 84 (3) 412-421
  • 84 Maruo T, Matsuo H, Murata K, Mochizuki M. Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab 1992; 75 (5) 1362-1367
  • 85 Dockery P, Li TC, Rogers AW, Cooke ID, Lenton EA. The ultrastructure of the glandular epithelium in the timed endometrial biopsy. Hum Reprod 1988; 3 (7) 826-834
  • 86 Spencer TE, Johnson GA, Burghardt RC, Bazer FW. Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol Reprod 2004; 71 (1) 2-10
  • 87 Noel S, Herman A, Johnson GA , et al. Ovine placental lactogen specifically binds to endometrial glands of the ovine uterus. Biol Reprod 2003; 68 (3) 772-780
  • 88 Stewart MD, Johnson GA, Gray CA , et al. Prolactin receptor and uterine milk protein expression in the ovine endometrium during the estrous cycle and pregnancy. Biol Reprod 2000; 62 (6) 1779-1789
  • 89 Kleis-SanFrancisco S, Hewetson A, Chilton BS. Prolactin augments progesterone-dependent uteroglobin gene expression by modulating promoter-binding proteins. Mol Endocrinol 1993; 7 (2) 214-223
  • 90 Wang H, Critchley HO, Kelly RW, Shen D, Baird DT. Progesterone receptor subtype B is differentially regulated in human endometrial stroma. Mol Hum Reprod 1998; 4 (4) 407-412
  • 91 Zhou XL, Lei ZM, Rao CV. Treatment of human endometrial gland epithelial cells with chorionic gonadotropin/luteinizing hormone increases the expression of the cyclooxygenase-2 gene. J Clin Endocrinol Metab 1999; 84 (9) 3364-3377
  • 92 Fazleabas AT, Donnelly KM, Hild-Petito S, Hausermann HM, Verhage HG. Secretory proteins of the baboon (Papio anubis) endometrium: regulation during the menstrual cycle and early pregnancy. Hum Reprod Update 1997; 3 (6) 553-559
  • 93 Hausermann HM, Donnelly KM, Bell SC, Verhage HG, Fazleabas AT. Regulation of the glycosylated beta-lactoglobulin homolog, glycodelin [placental protein 14:(PP14)] in the baboon (Papio anubis) uterus. J Clin Endocrinol Metab 1998; 83 (4) 1226-1233
  • 94 Jones RL, Critchley HO, Brooks J, Jabbour HN, McNeilly AS. Localization and temporal expression of prolactin receptor in human endometrium. J Clin Endocrinol Metab 1998; 83 (1) 258-262
  • 95 Christian M, Mak I, White JO, Brosens JJ. Mechanisms of decidualization. Reprod Biomed Online 2002; 4 (Suppl. 03) 24-30
  • 96 Koot YE, Teklenburg G, Salker MS, Brosens JJ, Macklon NS. Molecular aspects of implantation failure. Biochim Biophys Acta 2012; 1822 (12) 1943-1950
  • 97 Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol 2003; 178 (3) 357-372
  • 98 Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005; 11 (6) 613-630
  • 99 Shuya LL, Menkhorst EM, Yap J, Li P, Lane N, Dimitriadis E. Leukemia inhibitory factor enhances endometrial stromal cell decidualization in humans and mice. PLoS ONE 2011; 6 (9) e25288
  • 100 Paiva P, Menkhorst E, Salamonsen L, Dimitriadis E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev 2009; 20 (4) 319-328
  • 101 Paria BC, Zhao X, Das SK, Dey SK, Yoshinaga K. Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev Biol 1999; 208 (2) 488-501
  • 102 Reardon SN, King ML, MacLean II JA , et al. CDH1 is essential for endometrial differentiation, gland development, and adult function in the mouse uterus. Biol Reprod 2012; 86 (5) 141 , 1–10
  • 103 Robichaud A, Tuck SA, Kargman S , et al. Gob-5 is not essential for mucus overproduction in preclinical murine models of allergic asthma. Am J Respir Cell Mol Biol 2005; 33 (3) 303-314
  • 104 Jeong JW, Lee KY, Lydon JP, DeMayo FJ. Steroid hormone regulation of Clca3 expression in the murine uterus. J Endocrinol 2006; 189 (3) 473-484
  • 105 Chen SC, Mehrad B, Deng JC , et al. Impaired pulmonary host defense in mice lacking expression of the CXC chemokine lungkine. J Immunol 2001; 166 (5) 3362-3368
  • 106 Schmitz JM, McCracken VJ, Dimmitt RA, Lorenz RG. Expression of CXCL15 (Lungkine) in murine gastrointestinal, urogenital, and endocrine organs. J Histochem Cytochem 2007; 55 (5) 515-524
  • 107 Ang SL, Rossant J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 1994; 78 (4) 561-574
  • 108 Maeda N, Hagihara H, Nakata Y, Hiller S, Wilder J, Reddick R. Aortic wall damage in mice unable to synthesize ascorbic acid. Proc Natl Acad Sci U S A 2000; 97 (2) 841-846
  • 109 Lee K, Jeong J, Kwak I , et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 2006; 38 (10) 1204-1209
  • 110 Yoshida K, Taga T, Saito M , et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A 1996; 93 (1) 407-411
  • 111 Ni H, Ding NZ, Harper MJ, Yang ZM. Expression of leukemia inhibitory factor receptor and gp130 in mouse uterus during early pregnancy. Mol Reprod Dev 2002; 63 (2) 143-150
  • 112 Sun X, Zhang L, Xie H , et al. Kruppel-like factor 5 (KLF5) is critical for conferring uterine receptivity to implantation. Proc Natl Acad Sci U S A 2012; 109 (4) 1145-1150
  • 113 Ward PP, Mendoza-Meneses M, Cunningham GA, Conneely OM. Iron status in mice carrying a targeted disruption of lactoferrin. Mol Cell Biol 2003; 23 (1) 178-185
  • 114 McMaster MT, Teng CT, Dey SK, Andrews GK. Lactoferrin in the mouse uterus: analyses of the preimplantation period and regulation by ovarian steroids. Mol Endocrinol 1992; 6 (1) 101-111
  • 115 Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 1999; 8 (4) 265-277
  • 116 Satokata I, Ma L, Ohshima H , et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000; 24 (4) 391-395
  • 117 Daikoku T, Cha J, Sun X , et al. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell 2011; 21 (6) 1014-1025
  • 118 O'Sullivan CM, Liu SY, Karpinka JB, Rancourt DE. Embryonic hatching enzyme strypsin/ISP1 is expressed with ISP2 in endometrial glands during implantation. Mol Reprod Dev 2002; 62 (3) 328-334
  • 119 O'Sullivan CM, Liu SY, Rancourt SL, Rancourt DE. Regulation of the strypsin-related proteinase ISP2 by progesterone in endometrial gland epithelium during implantation in mice. Reproduction 2001; 122 (2) 235-244
  • 120 Chakraborty I, Das SK, Wang J, Dey SK. Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J Mol Endocrinol 1996; 16 (2) 107-122
  • 121 Gross GA, Imamura T, Luedke C , et al. Opposing actions of prostaglandins and oxytocin determine the onset of murine labor. Proc Natl Acad Sci U S A 1998; 95 (20) 11875-11879
  • 122 Arnaud E, Zenker J, de Preux Charles AS , et al. SH3TC2/KIAA1985 protein is required for proper myelination and the integrity of the node of Ranvier in the peripheral nervous system. Proc Natl Acad Sci U S A 2009; 106 (41) 17528-17533
  • 123 Sotiriou S, Gispert S, Cheng J , et al. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med 2002; 8 (5) 514-517
  • 124 Ohmuraya M, Hirota M, Araki M , et al. Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology 2005; 129 (2) 696-705
  • 125 Suzuki N, Nadano D, Paria BC, Kupriyanov S, Sugihara K, Fukuda MN. Trophinin expression in the mouse uterus coincides with implantation and is hormonally regulated but not induced by implanting blastocysts. Endocrinology 2000; 141 (11) 4247-4254
  • 126 Episkopou V, Maeda S, Nishiguchi S , et al. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci U S A 1993; 90 (6) 2375-2379
  • 127 Diao H, Xiao S, Cui J, Chun J, Xu Y, Ye X. Progesterone receptor-mediated up-regulation of transthyretin in preimplantation mouse uterus. Fertil Steril 2010; 93 (8) 2750-2753