Subscribe to RSS
DOI: 10.1055/s-0034-1371021
Musculoskeletal Applications of PET/MR
Publication History
Publication Date:
08 April 2014 (online)
Abstract
To overcome each limitation of morphological and functional imaging procedures, hybrid imaging systems have been developed and introduced into clinical routine. It has been increasingly discussed whether magnetic resonance imaging (MRI) might be an appropriate alternative for computed tomography (CT). The major advantage of positron emission tomography (PET)/MR consists of combined metabolic and anatomical information in a single imaging session that provides superior soft tissue characterization of MRI over CT. Until now, fusion image has been effectively utilized in oncologic indications. Because biopsy cannot be replaced by images for definite diagnosis, fusion imaging may be more efficient for staging based on nodal spread or metastases rather than the diagnosis of primary tumor, and it can be proficient for treatment response or postoperative assessment. This review describes mainly oncologic and nontumorous conditions among the musculoskeletal applications of PET/MR.
-
References
- 1 Mawlawi O, Townsend DW. Multimodality imaging: an update on PET/CT technology. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S15-S29
- 2 Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging?. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S113-S120
- 3 von Schulthess GK, Schlemmer HP. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S3-S9
- 4 Zaidi H, Mawlawi O, Orton CG. Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007; 34 (5) 1525-1528
- 5 Buchbender C, Hartung-Knemeyer V, Beiderwellen K , et al. Diffusion-weighted imaging as part of hybrid PET/MRI protocols for whole-body cancer staging: does it benefit lesion detection?. Eur J Radiol 2013; 82 (5) 877-882
- 6 Vargas MI, Becker M, Garibotto V , et al. Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 2013; 26 (1) 57-69
- 7 Pendse N, Wissmeyer M, Altrichter S , et al. Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 2010; 37 (1) 60-63
- 8 Garibotto V, Vargas MI, Lovblad KO, Ratib O. A PET-MRI case of corticocerebellar diaschisis after stroke. Clin Nucl Med 2011; 36 (9) 821-825
- 9 Garibotto V, Heinzer S, Vulliemoz S , et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 2013; 38 (1) e13-e18
- 10 Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 2012; 53 (8) 1244-1252
- 11 Haberkorn U, Schoenberg SO. Imaging of lung cancer with CT, MRT and PET. Lung Cancer 2001; 34 (Suppl. 03) S13-S23
- 12 Hoh CK. Clinical use of FDG PET. Nucl Med Biol 2007; 34 (7) 737-742
- 13 Czernin J, Auerbach MA. Clinical PET/CT imaging: promises and misconceptions. Nucl Med (Stuttg) 2005; 44 (Suppl. 01) S18-S23
- 14 Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007; 48 (Suppl. 01) 78S-88S
- 15 Weber WA, Grosu AL, Czernin J. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 2008; 5 (3) 160-170
- 16 Drzezga A, Souvatzoglou M, Eiber M , et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012; 53 (6) 845-855
- 17 Werner MK, Schmidt H, Schwenzer NF. MR/PET: a new challenge in hybrid imaging. AJR Am J Roentgenol 2012; 199 (2) 272-277
- 18 Schmidt GP, Schoenberg SO, Schmid R , et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 2007; 17 (4) 939-949
- 19 Rizzo S, Summers P, Raimondi S , et al. Diffusion-weighted MR imaging in assessing cervical tumour response to nonsurgical therapy. Radiol Med (Torino) 2011; 116 (5) 766-780
- 20 Zhang XY, Sun YS, Tang L, Xue WC, Zhang XP. Correlation of diffusion-weighted imaging data with apoptotic and proliferation indexes in CT26 colorectal tumor homografts in balb/c mouse. J Magn Reson Imaging 2011; 33 (5) 1171-1176
- 21 Schulte M, Brecht-Krauss D, Heymer B , et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000; 41 (10) 1695-1701
- 22 Hogendoorn PC, Athanasou N, Bielack S , et al; ESMO/EUROBONET Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 (Suppl. 05) v204-v213
- 23 Denecke T, Hundsdörfer P, Misch D , et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging 2010; 37 (10) 1842-1853
- 24 Casali PG, Blay JY ; ESMO/CONTICANET/EUROBONET Consensus Panel of experts. Soft tissue sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 (Suppl. 05) v198-v203
- 25 Ricard F, Cimarelli S, Deshayes E, Mognetti T, Thiesse P, Giammarile F. Additional benefit of F-18 FDG PET/CT in the staging and follow-up of pediatric rhabdomyosarcoma. Clin Nucl Med 2011; 36 (8) 672-677
- 26 Tateishi U, Hosono A, Makimoto A , et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med 2009; 23 (2) 155-161
- 27 Völker T, Denecke T, Steffen I , et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 2007; 25 (34) 5435-5441
- 28 Stacchiotti S, Collini P, Messina A , et al. High-grade soft-tissue sarcomas: tumor response assessment—pilot study to assess the correlation between radiologic and pathologic response by using RECIST and Choi criteria. Radiology 2009; 251 (2) 447-456
- 29 Wang X, Jacobs MA, Fayad L. Therapeutic response in musculoskeletal soft tissue sarcomas: evaluation by MRI. NMR Biomed 2011; 24 (6) 750-763
- 30 Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21 (12) 2604-2617
- 31 Martin WH, Delbeke D, Patton JA, Sandler MP. Detection of malignancies with SPECT versus PET, with 2-[fluorine-18]fluoro-2-deoxy-D-glucose. Radiology 1996; 198 (1) 225-231
- 32 Utech CI, Young CS, Winter PF. Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 1996; 23 (12) 1588-1593
- 33 Qu X, Huang X, Yan W, Wu L, Dai K. A meta-analysis of 18FDG-PET-CT, 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol 2012; 81 (5) 1007-1015
- 34 Liu T, Cheng T, Xu W, Yan WL, Liu J, Yang HL. A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol 2011; 40 (5) 523-531
- 35 Reischauer C, Froehlich JM, Koh DM , et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps—initial observations. Radiology 2010; 257 (2) 523-531
- 36 Grankvist J, Fisker R, Iyer V , et al. MRI and PET/CT of patients with bone metastases from breast carcinoma. Eur J Radiol 2012; 81 (1) e13-e18
- 37 Daldrup-Link HE, Franzius C, Link TM , et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001; 177 (1) 229-236
- 38 Daldrup HE, Link TM, Blasius S , et al. Monitoring radiation-induced changes in bone marrow histopathology with ultra-small superparamagnetic iron oxide (USPIO)-enhanced MRI. J Magn Reson Imaging 1999; 9 (5) 643-652
- 39 Breyer III RJ, Mulligan ME, Smith SE, Line BR, Badros AZ. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol 2006; 35 (9) 632-640
- 40 Durie BG, Waxman AD, D'Agnolo A, Williams CM. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med 2002; 43 (11) 1457-1463
- 41 Schirrmeister H, Bommer M, Buck AK , et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002; 29 (3) 361-366
- 42 Shortt CP, Gleeson TG, Breen KA , et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 2009; 192 (4) 980-986
- 43 Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol 2005; 184 (4) 1199-1204
- 44 Lecouvet FE, Dechambre S, Malghem J, Ferrant A, Vande Berg BC, Maldague B. Bone marrow transplantation in patients with multiple myeloma: prognostic significance of MR imaging. AJR Am J Roentgenol 2001; 176 (1) 91-96
- 45 Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med 2009; 50 (Suppl. 01) 21S-30S
- 46 Punwani S, Taylor SA, Bainbridge A , et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 2010; 255 (1) 182-190
- 47 Lin C, Luciani A, Itti E , et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 2010; 20 (8) 2027-2038
- 48 Wu LM, Chen FY, Jiang XX, Gu HY, Yin Y, Xu JR. 18F-FDG PET, combined FDG-PET/CT and MRI for evaluation of bone marrow infiltration in staging of lymphoma: a systematic review and meta-analysis. Eur J Radiol 2012; 81 (2) 303-311
- 49 Cheson BD, Pfistner B, Juweid ME , et al; International Harmonization Project on Lymphoma. Revised response criteria for malignant lymphoma. J Clin Oncol 2007; 25 (5) 579-586
- 50 Zijlstra JM, Lindauer-van der Werf G, Hoekstra OS, Hooft L, Riphagen II, Huijgens PC. 18F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 2006; 91 (4) 522-529
- 51 Isasi CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer 2005; 104 (5) 1066-1074
- 52 Pregno P, Chiappella A, Bellò M , et al. Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood 2012; 119 (9) 2066-2073
- 53 Lin C, Itti E, Luciani A , et al. Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Invest Radiol 2011; 46 (5) 341-349
- 54 Inaoka T, Takahashi K, Mineta M , et al. Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging. Radiology 2007; 243 (3) 869-876
- 55 Xing Y, Bronstein Y, Ross MI , et al. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst 2011; 103 (2) 129-142
- 56 Wagner JD, Schauwecker D, Davidson D , et al. Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol 1999; 17 (5) 1508-1515
- 57 Wagner JD, Davidson D, Coleman III JJ , et al. Lymph node tumor volumes in patients undergoing sentinel lymph node biopsy for cutaneous melanoma. Ann Surg Oncol 1999; 6 (4) 398-404
- 58 Laurent V, Trausch G, Bruot O, Olivier P, Felblinger J, Régent D. Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol 2010; 75 (3) 376-383
- 59 Müller-Horvat C, Radny P, Eigentler TK , et al. Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 2006; 42 (3) 342-350
- 60 Pfannenberg C, Aschoff P, Schanz S , et al. Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 2007; 43 (3) 557-564
- 61 Wilson AN, Davis A, Bell RS , et al. Local control of soft tissue sarcoma of the extremity: the experience of a multidisciplinary sarcoma group with definitive surgery and radiotherapy. Eur J Cancer 1994; 30A (6) 746-751
- 62 Lindner NJ, Ramm O, Hillmann A , et al. Limb salvage and outcome of osteosarcoma. The University of Muenster experience. Clin Orthop Relat Res 1999; (358) 83-89
- 63 Vanel D, Shapeero LG, Tardivon A, Western A, Guinebretière JM. Dynamic contrast-enhanced MRI with subtraction of aggressive soft tissue tumors after resection. Skeletal Radiol 1998; 27 (9) 505-510
- 64 Fletcher BD. Effects of pediatric cancer therapy on the musculoskeletal system. Pediatr Radiol 1997; 27 (8) 623-636
- 65 Bredella MA, Caputo GR, Steinbach LS. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol 2002; 179 (5) 1145-1150
- 66 Costelloe CM, Murphy Jr WA, Chasen BA. Musculoskeletal pitfalls in 18F-FDG PET/CT: pictorial review. AJR Am J Roentgenol 2009; 193 (3, Suppl): WS1-WS13 ; quiz S26–S30
- 67 Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N, Von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 2002; 179 (5) 1151-1157
- 68 Cho WI, Chang UK. Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures. J Neurosurg Spine 2011; 14 (2) 177-183
- 69 Yun M, Kim W, Adam LE, Alnafisi N, Herman C, Alavi A. F-18 FDG uptake in a patient with psoriatic arthritis: imaging correlation with patient symptoms. Clin Nucl Med 2001; 26 (8) 692-693
- 70 Palmer WE, Rosenthal DI, Schoenberg OI , et al. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995; 196 (3) 647-655
- 71 Sato J, Watanabe H, Shinozaki T, Fukuda T, Shirakura K, Takagishi K. Gouty tophus of the patella evaluated by PET imaging. J Orthop Sci 2001; 6 (6) 604-607
- 72 Wendling D, Blagosklonov O, Streit G, Lehuédé G, Toussirot E, Cardot JC. FDG-PET/CT scan of inflammatory spondylodiscitis lesions in ankylosing spondylitis, and short term evolution during anti-tumour necrosis factor treatment. Ann Rheum Dis 2005; 64 (11) 1663-1665
- 73 Fischer DR, Pfirrmann CW, Zubler V , et al. High bone turnover assessed by 18F-fluoride PET/CT in the spine and sacroiliac joints of patients with ankylosing spondylitis: comparison with inflammatory lesions detected by whole body MRI. EJNMMI Res 2012; 2 (1) 38
- 74 Catana C, van der Kouwe A, Benner T , et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 2010; 51 (9) 1431-1438
- 75 Catana C, Benner T, van der Kouwe A , et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med 2011; 52 (1) 154-161
- 76 Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics 2004; 24 (2) 523-543
- 77 Shiiba M, Ishihara K, Kimura G , et al. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med 2012; 26 (2) 138-145
- 78 Jadvar H, Pinski JK, Conti PS. FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep 2003; 10 (5) 1485-1488
- 79 Iagaru A, Mittra E, Mosci C , et al. Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 2013; 54 (2) 176-183
- 80 Wiesmüller M, Quick HH, Navalpakkam B , et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 2013; 40 (1) 12-21