Subscribe to RSS
DOI: 10.1055/s-0034-1368542
Thermoablation maligner Lungentumoren
Thermal Ablation of Malignant Lung TumoursPublication History
Publication Date:
20 October 2014 (online)
Zusammenfassung
Das Lungenkarzinom ist in Deutschland (50 000 Fälle/Jahr) der am häufigsten zum Tode führende Tumor. Die Lunge ist darüber hinaus die zweithäufigste Lokalisation von Fernmetastasen extrathorakaler Tumoren. Thermoablative Verfahren werden inzwischen zunehmend häufiger bei Patienten, die einem operativen Eingriff nicht zugeführt werden können, angewandt. Die größte klinische Erfahrung besteht für die Radiofrequenzablation (RFA). Kryoablation und Mikrowellenablation sowie laserinduzierte Thermotherapie sind neue, auch für den Einsatz an der Lunge vielversprechende Verfahren. In die Leitlinien zur Behandlung von Lungentumoren sind transthorakale ablative Therapieverfahren bisher noch nicht einbezogen. Prospektiv-randomisierte Studien, die stereotaktische Radiotherapie vs. Thermoablation vs. limitierte chirurgische Resektion vergleichen, liegen derzeit nicht vor. Bei nicht kleinzelligem Lungenkarzinom (NSCLC) nach RFA aufgrund von funktioneller Inoperabilität wird eine lokale Tumorkontrolle in ca. 90 % berichtet. Langzeitergebnisse nach lokaler Ablation sind aufgrund heterogener Kollektive und hoher Komorbidität vorsichtig zu interpretieren. Der peri-/postinterventionelle Pneumothorax ist die relevanteste Komplikation – die Einlage einer Thoraxdränage ist bei 10–20 % der Patienten erforderlich. Lebensqualitätsdaten nach Thermoablation maligner Lungentumoren liegen derzeit nicht vor. Die transkutane Thermoablation ergänzt das Spektrum therapeutischer Möglichkeiten für Patienten, die einem operativen Verfahren nicht zugeführt werden können. Die Indikation zur Tumorablation sollte stets im interdisziplinären Konsens nach Einschätzung der Operabilität durch einen Thoraxchirurgen festgelegt werden.
Abstract
In Germany in about 50,000 patients lung cancer is diagnosed per year – actually it is the tumour most likely to result in death. Furthermore, the lung is the second most common site of distant metastases of extrathoracic tumours. In recent years image-guided thermo-ablative techniques are increasingly being used in patients unable to undergo surgery. Radiofrequency ablation (RFA) is the most frequently used technique, cryoablation, microwave-ablation and laser-induced thermoablation are new and promising techniques. Actually there is only a small evidence base, only retrospective and prospective case series have been published as yet. Randomised controlled trials have not been conducted up to now. RFA results in a local control of tumour growth in about 90 %. Long-term results indicate 5-year survival rates of 20–61 % in patients with lung cancer or lung metastases. Pneumothorax is the most common morbidity – requiring drainage in about 10 % after the intervention. In the long term no loss of pulmonary function results after the ablation of peripheral lesions. Peripherally localised tumours < 3 cm in diameter are the most promising targets, the treatment of centrally localised tumours is subtle due to the “heat-loss” effect. The current evidence is insufficient to develop a procedure for differential indication of ablative techniques versus stereotactic radiotherapy. Tumour ablation always should be indicated on the basis of interdisciplinary consensus (including pulmonologists, oncologists, thoracic surgeons, radiotherapists). Inoperability should be assigned by the thoracic surgeon himself. Actually it cannot be considered an alternative to surgery for the treatment of malignant lung tumours with curative intent, however thermal ablation broadens the range of treatment options for patients being no candidates for surgery.
-
Literatur
- 1 Goeckenjan G, Sitter H, Thomas M et al. Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms. Pneumologie 2010; 64 (Suppl. 02) e1-e164
- 2 Pfannschmidt J, Dienemann H, Hoffmann H. Surgical resection of pulmonary metastases from colorectal cancer: a systematic review of published series. Ann Thorac Surg 2007; 84: 324-338
- 3 Dupuy DE, Zagoria RJ, Akerley W et al. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am J Roentgenol 2000; 174: 57-59
- 4 Lencioni R, Crocetti L, Cioni R et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the rapture study). Lancet Oncol 2008; 9: 621-628
- 5 Hiraki T, Gobara H, Iishi T et al. Percutaneous radiofrequency ablation for clinical stage I non-small cell lung cancer: results in 20 nonsurgical candidates. J Thorac Cardiovasc Surg 2007; 134: 1306-1312
- 6 Simon CJ, Dupuy DE, DiPetrillo TA et al. Pulmonary radiofrequency ablation: Long-term safety and efficacy in 153 patients. Radiology 2007; 243: 268-275
- 7 Schneider T, Puderbach M, Kunz J et al. Simultaneous computed tomography-guided biopsy and radiofrequency ablation of solitary pulmonary malignancy in high-risk patients. Respiration 2012; 84: 501-508
- 8 Lu DS, Raman SS, Vodopich DJ et al. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR Am J Roentgenol 2002; 178: 47-51
- 9 Steinke K, Glenn D, King J et al. Percutaneous pulmonary radiofrequency ablation: difficulty achieving complete ablations in big lung lesions. Br J Radiol 2003; 76: 742-745
- 10 Brace CL, Hinshaw JL, Laeseke PF et al. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 2009; 251: 705-711
- 11 Carrafiello G, Lagana D, Mangini M et al. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int J Surg 2008; 6 (Suppl. 01) S65-S69
- 12 Rosenberg C, Puls R, Hegenscheid K et al. Laser ablation of metastatic lesions of the lung: long-term outcome. AJR Am J Roentgenol 2009; 192: 785-792
- 13 Hinshaw JL, Lee jr. FT, Laeseke PF et al. Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation. J Vasc Interv Radiol 2010; 21: 1424-1428
- 14 Healey TT, Dupuy DE. Radiofrequency ablation: a safe and effective treatment in nonoperative patients with early-stage lung cancer. Cancer J 2011; 17: 33-37
- 15 Hoffmann RT, Jakobs TF, Reiser MF et al. [Radiofrequency ablation of lung tumors and -metastases]. Radiologe 2004; 44: 364-369
- 16 Herrera LJ, Fernando HC, Perry Y et al. Radiofrequency ablation of pulmonary malignant tumors in nonsurgical candidates. J Thorac Cardiovasc Surg 2003; 125: 929-937
- 17 Bojarski JD, Dupuy DE, Mayo-Smith WW. CT imaging findings of pulmonary neoplasms after treatment with radiofrequency ablation: results in 32 tumors. AJR Am J Roentgenol 2005; 185: 466-471
- 18 Alberti N, Frulio N, Trillaud H et al. Pulmonary aspergilloma in a cavity formed after percutaneous radiofrequency ablation. Cardiovasc Intervent Radiol 2014; 37: 537-540
- 19 Alberti N, Ferretti G, Buy X et al. Diaphragmatic hernia after lung percutaneous radiofrequency ablation: Incidence and risk factors. Cardiovasc Intervent Radiol 2014; [Epub ahead of print]
- 20 Hiraki T, Mimura H, Gobara H et al. Two cases of needle-tract seeding after percutaneous radiofrequency ablation for lung cancer. J Vasc Interv Radiol 2009; 20: 415-418
- 21 Jaskolka JD, Asch MR, Kachura JR et al. Needle tract seeding after radiofrequency ablation of hepatic tumors. J Vasc Interv Radiol 2005; 16: 485-491
- 22 Goh P. Radiofrequency ablation of lung tumours. Biomed Imaging Interv J 2006; 2: e39
- 23 Kodama H, Yamakado K, Takaki H et al. Lung radiofrequency ablation for the treatment of unresectable recurrent non-small-cell lung cancer after surgical intervention. Cardiovasc Intervent Radiol 2011; 35: 563-569
- 24 Kawamura M, Izumi Y, Tsukada N et al. Percutaneous cryoablation of small pulmonary malignant tumors under computed tomographic guidance with local anesthesia for nonsurgical candidates. J Thoracic Cardiovasc Surg 2006; 131: 1007-1013
- 25 Sharma A, Digumarthy SR, Kalra MK et al. Reversible locoregional lymph node enlargement after radiofrequency ablation of lung tumors. AJR Am J Roentgenol 2006; 194: 1250-1256
- 26 Schneider T, Reuss D, Warth A et al. The efficacy of bipolar and multipolar radiofrequency ablation of lung neoplasms – results of an ablate and resect study. Eur J Cardiothorac Surg 2011; 39: 968-973
- 27 Belfiore G, Ronza F, Belfiore MP et al. Patientsʼ survival in lung malignancies treated by microwave ablation: our experience on 56 patients. Eur J Radiol 2013; 82: 177-181
- 28 Wolf FJ, Grand DJ, Machan JT et al. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 2008; 247: 871-879
- 29 Zhang X, Tian J, Zhao L et al. CT-guided conformal cryoablation for peripheral NSCLC: initial experience. Eur J Radiol 2012; 81: 3354-3362
- 30 Kirkpatrick JP, Kelsey CR, Palta M et al. Stereotactic body radiotherapy: a critical review for nonradiation oncologists. Cancer 2014; 120: 942-954
- 31 Grutters JP, Kessels AG, Pijls-Johannesma M et al. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol 2010; 95: 32-40
- 32 Dahele M, Brade A, Pearson S et al. Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer. CMAJ 2009; 180: 1326-1328
- 33 Timmerman R, Paulus R, Galvin J et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010; 303: 1070-1076
- 34 Timmerman R, McGarry R, Yiannoutsos C et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 2006; 24: 4833-4839
- 35 Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg 2010; 211: 68-72