Klin Monbl Augenheilkd 2014; 231(7): 709-717
DOI: 10.1055/s-0034-1368451
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Optische Kohärenztomografie – hoch aufgelöste Gewebedarstellung, aber keine Histologie!

Optical Coherence Tomography – High-Resolution Tissue Imaging, but not Histology!
S. Koinzer
Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Kiel
› Author Affiliations
Further Information

Publication History

eingereicht 03 February 2014

akzeptiert 07 April 2014

Publication Date:
03 July 2014 (online)

Zusammenfassung

Optische Kohärenztomografie (OCT) wurde als nichtinvasives Verfahren der retinalen In-vivo-Bildgebung 1991 vorgestellt und ist seit 1996 kommerziell verfügbar. Seit der Einführung der höher auflösenden Spectral-Domain OCT (SD-OCT) lassen sich im OCT-Bild alle histologischen Netzhautschichten dank einer axialen Auflösung von 1–5 µm sicher abgrenzen. Zahlreiche Arbeiten korrelierten Bilder gesunder Netzhaut verschiedener Spezies in OCT und Histologie. Die sichere Zuordnung der Reflektivitätsbänder im OCT-Bild zur histologischen Schicht ist dadurch auch für diejenigen Netzhautschichten möglich, welche die OCT abweichend von Histologie darstellt. Die Korrelation krankhafter Netzhautbefunde in OCT und Histologie wurde aufgrund der schlechten Materialverfügbarkeit von Patienten nur selten durchgeführt. Die vorgelegten Arbeiten konnten histologische Aufarbeitungsartefakte identifizieren. Sie zeigten aber auch, dass Reflektivitätsänderungen in der OCT nicht mit der Zelldichte in der Netzhaut korrelieren, also etwa eine faserreiche Narbe isoreflektiv zur umliegenden gesunden Netzhaut erscheinen kann. Morphometrische Analysen zeigen, dass Reflektivitätsänderungen in der OCT grundsätzlich eine andere Gewebeveränderung anzeigen als ein histologischer Schnitt. Während also grobe Strukturänderungen der Netzhaut durch OCT gut lokalisiert und im Längsschnitt verfolgt werden können, ist es nahezu unmöglich, von einem OCT-Bild auf die histologisch zugrunde liegende zelluläre Veränderung zurückzuschließen. So kommt es immer wieder zu Fehlinterpretationen von OCT-Bildern. Dieser Artikel stellt den gegenwärtigen Erkenntnisstand zu dieser Problematik anhand aktueller Literatur dar und möchte den Kliniker wie den Wissenschaftler zur kritischen und aufmerksamen OCT-Bildanalyse anregen.

Abstract

Optical coherence tomography (OCT) is a non-invasive and fast method for retinal in vivo imaging. It was introduced in 1991 and became commercially available in 1996. With higher resolution spectral domain OCT (SD-OCT), all histological retinal layers can be identified with an axial resolution of 1–5 µm today. Numerous papers have correlated OCT and histological images of physiological retina from different species. Reliable attribution of the reflective bands in OCT images to histological layers has been facilitated even for those layers that are displayed differently in OCT and histology, particularly in the outer retina. In contrast, the correlation of OCT and histology of pathologically altered human retina has only rarely been described due to very limited histological availability. The studies that presented such a correlation on animal material were able to identify some artifacts of histological processing. They also showed that OCT reflectivity changes do not necessarily correlate with cell density in the retina, such that a retinal scar, which is rich in fibres, may appear isoreflective to surrounding healthy retina. This issue, however, has mostly been neglected. Morphometric analyses revealed significantly larger diameters in OCT images compared to histology of photocoagulation lesions. Obviously, OCT reflectivity changes indicate a different tissue condition than altered HE-staining properties in histology. While coarse retinal structure alterations may be located and followed very well with OCT, it is almost impossible to derive from an OCT image the histological change that causes the alteration on a cellular level. This leads to frequent misinterpretations of OCT images. This article aims to pinpoint the pitfalls of OCT interpretation with examples from the current literature, and it encourages the reader to be attentive and critical when interpreting OCT images.

 
  • Literatur

  • 1 Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 2010; 149: 18-31
  • 2 Kang H, Su L, Zhang H et al. Early histological alteration of the retina following photocoagulation treatment in diabetic retinopathy as measured by spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1705-1711
  • 3 Srinivasan VJ, Monson BK, Wojtkowski M et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2008; 49: 1571-1579
  • 4 Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 2011; 31: 1609-1619
  • 5 Pelosini L, Smith HB, Schofield JB et al. In vivo optical coherence tomography (OCT) in periocular basal cell carcinoma: correlations between in vivo OCT images and postoperative histology. Br J Ophthalmol 2013; 97: 890-894
  • 6 Huber G, Beck SC, Grimm C et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 2009; 50: 5888-5895
  • 7 Fischer MD, Huber G, Beck SC et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 2009; 4: e7507
  • 8 Ruggeri M, Wehbe H, Jiao S et al. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2007; 48: 1808-1814
  • 9 Puk O, de Angelis MH, Graw J. Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains. Mamm Genome 2013; 24: 198-205
  • 10 Koinzer S, Saeger M, Hesse C et al. Correlation with OCT and histology of photocoagulation lesions in patients and rabbits. Acta Ophthalmol 2013; 91: e603-e611
  • 11 Huang D. Functional and Structural Optical Coherence Tomography – Friedenwald Lecture. Seattle, WA: ARVO Annual Meeting; 2013
  • 12 Huang D, Swanson E, Lin C et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 13 Gambichler T, Jaedicke V, Terras S. Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 2011; 303: 457-473
  • 14 Regar E, Ligthart J, Bruining N et al. The diagnostic value of intracoronary optical coherence tomography. Herz 2011; 36: 417-429
  • 15 Mujat M, Greco K, Galbally-Kinney KL et al. Optical coherence tomography-based freeze-drying microscopy. Biomed Opt Express 2012; 3: 55-63
  • 16 Burns JA. Optical coherence tomography: imaging the larynx. Curr Opin Otolaryngol Head Neck Surg 2012; 20: 477-481
  • 17 Zhang QQ, Wu XJ, Tang T et al. Quantitative analysis of rectal cancer by spectral domain optical coherence tomography. Phys Med Biol 2012; 57: 5235-5244
  • 18 Yang X, Lorenser D, McLaughlin RA et al. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed Opt Express 2013; 5: 136-148
  • 19 Abbott CJ, McBrien NA, Grünert U et al. Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri). Invest Ophthalmol Vis Sci 2009; 50: 414-423
  • 20 Anger EM, Unterhuber A, Hermann B et al. Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 2004; 78: 1117-1125
  • 21 Baumann B, Choi W, Potsaid B et al. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Opt Express 2012; 20: 10218-10230
  • 22 Nakagawa H, Sadr A, Shimada Y et al. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro. J Dent 2013; 41: 80-89
  • 23 Matsuo Y, Sakamoto T, Yamashita T et al. Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 2013; 54: 7630-7636
  • 24 Müller HH, Ptaszynski L, Schlott K et al. Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT. Biomed Opt Express 2012; 3: 1025-1046
  • 25 Hillmann D, Lührs C, Bonin T et al. Holoscopy-holographic optical coherence tomography. Opt Lett 2011; 36: 2390-2392
  • 26 Hillmann D, Bonin T, Lührs C et al. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT. Opt Express 2012; 20: 6761-6776
  • 27 Zhi Z, Yin X, Dziennis S et al. Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice. Biomed Opt Express 2012; 3: 2976-2986
  • 28 Oberholzer M. Morphometrie in der klinischen Pathologie. Allgemeine Grundlagen. Berlin, Heidelberg: Springer; 1983
  • 29 Koinzer S, Bajorat S, Hesse C et al. Calibration of histological retina specimens after fixation in Margoʼs solution and paraffin embedding to in-vivo dimensions, using photography and optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2014; 252: 145-153
  • 30 Klopfleisch R, Weiss ATA, Gruber AD. Excavation of a buried treasure–DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol 2011; 26: 797-810
  • 31 Baur R. [Error correction by sterologic measuring on human placenta. 2. Cutting compression]. Experientia 1969; 25: 1173
  • 32 Gardella D, Hatton WJ, Rind HB et al. Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic- and cryosections. J Neurosci Methods 2003; 124: 45-59
  • 33 Penttila A, McDowell EM, Trump BF. Effects of fixation and postfixation treatments on volume of injured cells. J Histochem Cytochem 1975; 23: 251-270
  • 34 Lorenz B. Morphologic Changes of chorioretinal Argon Laser Burns during the first Hour post Exposure. Lasers in the Life Sciences. Newark, NJ: Harwood Academic Publishers GmbH; 1988: 207-226
  • 35 Jain A, Blumenkranz MS, Paulus Y et al. Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch Ophthalmol 2008; 126: 78-85
  • 36 Weinberg W, Gabel VP, Birngruber R et al. [Time sequence of the white Hue correlated with the extent of damage in photocoagulation of the retina]. Ber Dtsch Ophthalmol Ges 1981; 78: 603-606
  • 37 Koinzer S, Schlott K, Ptaszynski L et al. Temperature-controlled retinal photocoagulation–a step toward automated laser treatment. Invest Ophthalmol Vis Sci 2012; 53: 3605-3614
  • 38 Roider J, Michaud N, Flotte T et al. [Histology of retinal lesions after continuous irradiation and selective micro-coagulation of the retinal pigment epithelium]. Ophthalmologe 1983; 90: 274-278
  • 39 Sramek C, Paulus Y, Nomoto H et al. Dynamics of retinal photocoagulation and rupture. J Biomed Opt 2009; 14: 034007
  • 40 Sarder P, Yazdanfar S, Akers WJ et al. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes. J Biomed Opt 2013; 18: 106012
  • 41 Tserevelakis GJ, Megalou EV, Filippidis G et al. Label-free imaging of lipid depositions in C. elegans using third-harmonic generation microscopy. PLoS One 2014; 9: e84431
  • 42 Hoerster R, Muether PS, Vierkotten S et al. In-vivo and ex-vivo characterization of laser-induced choroidal neovascularization variability in mice. Graefes Arch Clin Exp Ophthalmol 2012; 250: 1579-1586
  • 43 Toth C, Birngruber R, Fujimoto J et al. Correlation between optical coherence tomography, clinical examination and histopathology of macular laser lesions. Invest Ophthalmol Vis Sci 1995; 36: 188-198
  • 44 Koinzer S, Hesse C, Caliebe A et al. Photocoagulation in rabbits: Optical coherence tomographic lesion classification, wound healing reaction, and retinal temperatures. Lasers Surg Med 2013; 45: 427-436
  • 45 Kim SY, Muftuoglu O, Nick Hogan R et al. Histopathology and spectral domain OCT findings of pneumatic-assisted dissection in DALK. Cornea 2012; 31: 1288-1293