Pneumologie 2014; 68(06): 386-393
DOI: 10.1055/s-0034-1365456
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Pulmonale Hypertonie: mikroRNAs in Pathogenese, Diagnostik und Therapie

Pulmonary Hypertension: microRNAs in Pathogenesis, Diagnosis and Therapy
L. C. Huber
Klinik für Pneumologie, Universitätsspital Zürich
,
C. Leuenberger
Klinik für Pneumologie, Universitätsspital Zürich
,
M. Kohler
Klinik für Pneumologie, Universitätsspital Zürich
,
M. Brock
Klinik für Pneumologie, Universitätsspital Zürich
› Author Affiliations
Further Information

Publication History

eingereicht 02 January 2014

akzeptiert nach Revision 14 March 2014

Publication Date:
08 April 2014 (online)

Zusammenfassung

Im Unterschied zur pulmonal-arteriellen Hypertonie, welche eine seltene Erkrankung ist, umfasst der Überbegriff der pulmonalen Hypertonie ein klinisch häufigeres Krankheitsbild. Die pathophysiologische Trias von Vasokonstriktion, Mikrothrombosen und Gefäßumbau (Remodelling) findet sich dabei unabhängig von der zugrundeliegenden Entität in unterschiedlich starker Ausprägung bei praktisch allen Formen der pulmonalen Hypertonie. In dieser Übersichtsarbeit werden neue Aspekte in der Pathogenese des pulmonal-vaskulären Remodellings, insbesondere mikroRNA-abhängige Mechanismen, besprochen.

MikroRNAs sind kleine RNA-Fragmente, welche an die messengerRNA eines Zielgenes binden, was zum Abbau des Zielgenes oder zur Translationshemmung des betreffenden Gens führt („gene silencing“). Im Zusammenhang mit dem Gefäßumbau bei der pulmonalen Hypertonie ist vor allem die Assoziation von mikroRNAs und des Bone Morphogenetic Protein Rezeptor Typ II interessant: In verschiedenen Formen der pulmonalen Hypertonie wurde eine reduzierte Expression von Bone Morphogenetic Protein Rezeptor Typ II auf Endothelien und Gefäßmuskelzellen gefunden. Durch spezifische Hemmung mittels AntagomiRs bieten mikroRNAs die Möglichkeit für einen potenziell kausalen Therapieansatz. MikroRNAs werden zudem als Biomarker im Serum für Diagnose, Schweregrad und Prognose der pulmonalen Hypertonie validiert.

Abstract

Whereas pulmonary arterial hypertension is an orphan disease, the term pulmonary hypertension includes several common entities and is of major clinical significance. The pathophysiological triad of vasoconstriction, microthrombosis and vascular remodeling is found in most forms of pulmonary hypertension, independently of the underlying etiology. In this review, novel aspects in the pathogenesis of the remodeling, in particular microRNAs, will be discussed. MicroRNAs are small RNA fragments which bind specifically to the mRNA of a target gene thus decreasing its stability or inhibiting further translation (“gene silencing”). Of major interest is the association between microRNAs and the expression of bone morphogenetic protein receptor type II which has been found to be dysregulated on pulmonary endothelial and vascular smooth muscle cells in several forms of pulmonary hypertension. The specific inhibition of microRNAs by antagomiRs makes microRNAs a potential therapeutic target. Moreover, microRNAs are being validated in serum as biomarkers for diagnosis, severity and prognosis of pulmonary hypertension.

 
  • Literatur

  • 1 Simonneau G, Galie N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004; 43: 5-12
  • 2 Chemla D, Castelain V, Humbert M et al. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 2004; 126: 1313-1317
  • 3 Rich JD, Shah SJ, Swamy RS et al. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 2011; 139: 988-993
  • 4 Galie N, Torbicki A, Barst R et al. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J 2004; 25: 2243-2278
  • 5 Opitz CF, Blindt R, Blumberg F et al. Pulmonary hypertension: hemodynamic evaluation: hemodynamic evaluation – recommendations of the Cologne Consensus Conference 2010. Dtsch Med Wochenschr 2010; 135 : 78-86
  • 6 Machado RF, Londhe Nerkar MV, Dweik RA et al. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free radical biology & medicine 2004; 37: 1010-1017
  • 7 Pietra GG, Capron F, Stewart S et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 2004; 43: 25S-32S
  • 8 Morrell NW. Screening for pulmonary arteriovenous malformations. Am J Respir Crit Care Med 2004; 169: 978-979
  • 9 Olschewski H, Seeger W. Treatment of pulmonary artery hypertension. Pneumologie 2000; 54 (06) 222-224
  • 10 Pietra GG, Capron F, Stewart S et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 2004; 43: 25-32
  • 11 Dorfmuller P, Humbert M, Capron F. Update on the pathomorphological assessment of vasculopathies in pulmonary arterial hypertension. Pathologe 2006; 27: 140-146
  • 12 Hassoun PM, Krishnan JA. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med 2004; 350: 2521-2522 , author reply 2521–2522
  • 13 Humbert M, Monti G, Brenot F et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995; 151: 1628-1631
  • 14 Soon E, Holmes AM, Treacy CM et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010; 122: 920-927
  • 15 Ulrich S, Taraseviciene-Stewart L, Huber LC et al. Peripheral blood B lymphocytes derived from patients with idiopathic pulmonary arterial hypertension express a different RNA pattern compared with healthy controls: a cross sectional study. Respir Res 2008; 9: 20
  • 16 Balabanian K, Foussat A, Dorfmuller P et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165: 1419-1425
  • 17 Dorfmuller P, Zarka V, Durand-Gasselin I et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165: 534-539
  • 18 Perros F, Dorfmuller P, Souza R et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 2007; 29: 937-943
  • 19 Schermuly RT, Dony E, Ghofrani HA et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005; 115: 2811-2821
  • 20 Bonnet S, Rochefort G, Sutendra G et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 2007; 104: 11418-11423
  • 21 Weir EK, Olschewski AK. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res 2006; 71: 630-641
  • 22 Marcos E, Adnot S, Pham MH et al. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am J Respir Crit Care Med 2003; 168: 487-493
  • 23 Ulrich S, Szamalek-Hoegel J, Hersberger M et al. Sequence variants in BMPR2 and genes involved in the serotonin and nitric oxide pathways in idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: relation to clinical parameters and comparison with left heart disease. Respiration 2010; 79: 279-287
  • 24 Machado RD, Eickelberg O, Elliott CG et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54 (01) 32-42
  • 25 Lane KB, Machado RD et al. International PPHC. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 2000; 26: 81-84
  • 26 Sztrymf B, Coulet F, Girerd B et al. Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med 2008; 177: 1377-1383
  • 27 Montani D, Achouh L, Dorfmuller P et al. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore) 2008; 87: 220-233
  • 28 Atkinson C, Stewart S, Upton PD et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 2002; 105: 1672-1678
  • 29 Ishida K, Masuda M, Tanabe N et al. Long-term outcome after pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg 2012; 144: 321-326
  • 30 Morty RE, Nejman B, Kwapiszewska G et al. Dysregulated bone morphogenetic protein signaling in monocrotaline-induced pulmonary arterial hypertension. Arteriosclerosis, thrombosis, and vascular biology 2007; 27: 1072-1078
  • 31 Takahashi H, Goto N, Kojima Y et al. Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2006; 290: 450-458
  • 32 Brock M, Trenkmann M, Gay RE et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circulation research 2009; 104: 1184-1191
  • 33 Dewachter L, Adnot S, Guignabert C et al. Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension. Eur Respir J 2009; 34: 1100-1110
  • 34 Long L, Crosby A, Yang X et al. Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 2009; 119: 566-576
  • 35 Caruso P, Maclean MR, Khanin R et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 2010; 30: 716-723
  • 36 Brock M, Trenkmann M, Gay RE et al. MicroRNA-18a enhances the interleukin-6-mediated production of the acute-phase proteins fibrinogen and haptoglobin in human hepatocytes. J Biol Chem 2011; 286: 40142-40150
  • 37 Kosaka N, Ochiya T. Unraveling the Mystery of Cancer by Secretory microRNA: Horizontal microRNA Transfer between Living Cells. Front Genet 2011; 2: 97
  • 38 Kosaka N, Takeshita F, Yoshioka Y et al. Exosomal tumor-suppressive microRNAs as novel cancer therapy: “exocure” is another choice for cancer treatment. Adv Drug Deliv Rev 2013; 65: 376-382
  • 39 Masri FA, Xu W, Comhair SA et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293: 548-554
  • 40 Pullamsetti SS, Doebele C, Fischer A et al. Inhibition of MicroRNA-17 Improves Lung and Heart Function in Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2012; 185: 409-419
  • 41 Brock M, Samillan VJ, Trenkmann M et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension. European heart journal 2012; DOI: 10.1093/eurheart/ehs060. [electronic publication only]
  • 42 Yang S, Banerjee S, Freitas A et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2012; 302: 521-529
  • 43 Parikh VN, Jin RC, Rabello S et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 2012; 125: 1520-1532
  • 44 Kang K, Peng X, Zhang X et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 2013; 288: 25414-25427
  • 45 Wang D, Zhang H, Li M et al. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 2014; 114: 67-78
  • 46 Pohl NM, Fernandez RA, Smith KA et al. Deacetylation of MicroRNA-124 in fibroblasts: role in pulmonary hypertension. Circ Res 2014; 114: 5-8
  • 47 Huber L, Ulrich S, Gassmann M et al. Serum levels of microRNA-125a are decreased in patients with precapillary pulmonary hypertension and correlate inversely with hemodynamics. ERS Annual Congress 2013; Abstract Number 3416
  • 48 Cheng Y, Liu X, Yang J et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 2009; 105: 158-166
  • 49 Caruso P, Dempsie Y, Stevens HC et al. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 2012; 111: 290-300
  • 50 Rhodes CJ, Wharton J, Boon RA et al. Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 187: 294-302
  • 51 Courboulin A, Paulin R, Giguere NJ et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 2011; 208: 535-548
  • 52 Chandra SM, Razavi H, Kim J et al. Disruption of the apelin-APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol 2011; 31: 814-820
  • 53 Kim J, Kang Y, Kojima Y et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 2013; 19: 74-82
  • 54 Hoeper MM, Barst RJ, Bourge RC et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 2013; 127: 1128-1138
  • 55 Montani D, Bergot E, Gunther S et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012; 125: 2128-2137
  • 56 Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984
  • 57 Dong S, Ma W, Hao B et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol 2014; 7: 565-574
  • 58 Liu F, Yin L, Zhang L et al. Trimetazidine improves right ventricular function by increasing miR-21 expression. Int J Mol Med 2012; 30: 849-855
  • 59 Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685-689
  • 60 Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1685-1694
  • 61 Lieberman J, Sarnow P. Micromanaging hepatitis C virus. N Engl J Med 2013; 368: 1741-1743
  • 62 Brock M, Gassmann M, Speich R et al. The hypoxia-induced miR-130 increases proliferation of pulmonary arterial smooth muscle cells by targeting the tumor suppressor CDKN1A (p21). ERS Annual Congress 2013; Abstract Number 1500
  • 63 Rhodes CJ, Wharton J, Boon RA et al. Reduced miR-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 187: 294-302
  • 64 Winter J, Jung S, Keller S et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228-234
  • 65 Brock M, Huber LC. Vascular remodelling in hypoxia-induced pulmonary hypertension: role of cytokines and microRNAs. PVRI Review 2013; 5: 20-23