Zeitschrift für Orthomolekulare Medizin 2014; 12(1): 16-19
DOI: 10.1055/s-0033-1360396
Wissen
Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG Stuttgart · New York

Morbus Alzheimer – Diabetes des Gehirns?

Bedeutung der B-Vitamine
Joachim Schmidt
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
25. März 2014 (online)

Zusammenfassung

Diabetes mellitus ist ein Risikofaktor für die Entstehung und Progression der Demenz. Störungen des zerebralen Glukosestoffwechsels sind kennzeichnend für die Alzheimer-Krankheit und führen zu Störungen von neuronalen Prozessen und Neurotransmission. Neuere Untersuchungen deuten darauf hin, dass Thiamin und andere B-Vitamine in Prävention und Therapie demenzieller Erkankungen von Bedeutung sind.

Literaturverzeichnis als PDF

 
  • Literatur

  • 1 Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimerʼs disease prevalence. Lancet Neurol 2011; 10 (9) 819-828
  • 2 Biessels GJ, Staekenborg S, Brunner E et al. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006; 5 (1) 64-74
  • 3 Blass JP, Gleason P, Brush D et al. Thiamine and Alzheimerʼs disease. A pilot study. Arch Neurol 1988; 45 (8) 833-835
  • 4 Butterworth RF, Besnard AM. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimerʼs disease. Metab Brain Dis 1990; 5 (4) 179-184
  • 5 Calingasan NY, Gandy SE, Baker H et al. Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Res 1995; 677 (1) 50-60
  • 6 Chen Z, Zhong C. Decoding Alzheimerʼs disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108: 21-43
  • 7 den Heijer T, Vermeer SE, Clarke R et al. Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 2003; 126 (Pt 1) 170-175
  • 8 Doody RS, Thomas RG, Farlow M et al. Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimerʼs Disease. N Engl J Med 2014; 370 (4) 311-321
  • 9 Fatke B, Förstl H. Diabetes mellitus und Demenz. Diabetologe 2013; 9 (3) 217-225
  • 10 Gibson GE, Sheu KF, Blass JP et al. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimerʼs disease. Arch Neurol 1988; 45 (8) 836-840
  • 11 Gibson GE et al. A central cholinergic deficit in rats with dietary thiamin deficiency. Neurochem Pathol 1983; 1: 125-135
  • 12 Gibson GE, Hirsch JA, Cirio RT et al. Abnormal thiamine-dependent processes in Alzheimerʼs Disease. Lessons from diabetes. Mol Cell Neurosci 2013; 55: 17-25
  • 13 Gold M, Chen MF, Johnson K. Plasma and red blood cell thiamine deficiency in patients with dementia of the Alzheimerʼs type. Arch Neurol 1995; 52 (11) 1081-1086
  • 14 Gröber U, Kisters K, Schmidt J. Neuroenhancement with vitamin B12-underestimated neurological significance. Nutrients 2013; 5 (12) 5031-5045
  • 15 Herholz K. Cerebral glucose metabolism in preclinical and prodromal Alzheimerʼs disease. Expert Rev Neurother 2010; 10 (11) 1667-1673
  • 16 Luʼoʼng Kv, Nguyen LT. Role of thiamine in Alzheimerʼs disease. Am J Alzheimers Dis Other Demen 2011; 26 (8) 588-598
  • 17 Meador K, Loring D, Nichols M et al. Preliminary findings of high-dose thiamine in dementia of Alzheimerʼs type. J Geriatr Psychiatry Neurol 1993; 6 (4) 222-229
  • 18 Mimori Y, Katsuoka H, Nakamura S. Thiamine therapy in Alzheimerʼs disease. Metab Brain Dis 1996; 11 (1) 89-94
  • 19 Molina JA, Jimenez-Jimenez FJ, Hernanz A et al. Cerebrospinal fluid levels of thiamine in patients with Alzheimerʼs disease. J Neural Transm 2002; 109(7–8): 1035-1044
  • 20 Mosconi L, Berti V, Glodzik L et al. Pre-clinical detection of Alzheimerʼs disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis 2010; 20 (3) 843-854
  • 21 Ott A, Stolk R P, Hofman A et al. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia 1996; 39 (11) 1392-1397
  • 22 Pan X, Gong N, Zhao J et al. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 2010; 133(Pt 5): 1342-1351
  • 23 Querfurth HW, LaFerla FM. Alzheimerʼs Disease. N Engl J Med 2010; 362: 379-377
  • 24 Rönnemaa E, Zethelius B, Sundelof J et al. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 2008; 71 (14) 1065-1071
  • 25 Salloway S, Sperling R, Fox NC et al. Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimerʼs Disease. N Engl J Med 2014; 370 (4) 322-333
  • 26 Seshadri S, Beiser A, Selhub J et al. Plasma homocysteine as a risk factor for dementia and Alzheimerʼs disease. N Engl J Med 2002; 346 (7) 476-483
  • 27 Smith AD, Smith SM, de Jager CA et al. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial. PLoS ONE 2010; 5 (9) e12244
  • 28 Vogiatzoglou A, Refsum H, Johnston C et al. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 2008; 71: 826-832
  • 29 Wang KC, Woung LC, Tsai MT et al. Risk of Alzheimerʼs disease in relation to diabetes: a population-based cohort study. Neuroepidemiology 2012; 38 (4) 237-244
  • 30 Williams JH, Pereira EA, Budge MM, Bradley KM. Minimal hippocampal width relates to plasma homocysteine in community-dwelling older people. Age Ageing 2002; 31 (6) 440-444