Subscribe to RSS
DOI: 10.1055/s-0033-1360363
Fatsioside A, a Rare Baccharane-Type Glycoside Inhibiting the Growth of Glioma Cells from the Fruits of Fatsia japonica
Publication History
received 29 September 2013
revised 03 January 2014
accepted 20 January 2014
Publication Date:
18 February 2014 (online)
Abstract
A novel baccharane-type triterpenoid glycoside named fatsioside A (1), together with ten oleanane glycosides, were isolated from the fruits of Fatsia japonica. The structure of fatsioside A was assigned as 3β,15α,18α-trihydroxy-18,19-secolupane-12,19-dione 3-O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside by extensive NMR and HRESIMS analyses. F. japonica is the third baccharane glycoside-containing species reported to date in the plant kingdom, while fatsioside A represents the first baccharane glycoside found in the Araliaceae family. Fatsioside A inhibited the growth of rat glioma C6 cells and human glioma U251 cells with IC50 values of 33.48 ± 2.01 µM and 77.58 ± 6.19 µM, respectively. Further investigation indicated that fatsioside A induced apoptosis and necrosis in glioma cells, and arrested the cell cycle at the G0/G1 phase.
Key words
Fatsia japonica - Araliaceae - fatsioside A - rare baccharane glycoside - inhibition of glioma cell growth-
References
- 1 Kitanaka S, Yasuda I, Kashiwada Y, Hu CQ, Bastow KF, Bori ID, Lee KH. Antitumor agents, 162. Cell-based assays for identifying novel DNA topoisomerase inhibitors: studies on the constituents of Fatsia japonica . J Nat Prod 1995; 58: 1647-1654
- 2 Editorial Commission of Zhonghua Pencao. Zhonghua Pencao, Volume 5. Shanghai: Shanghaiʼs Science and Technology Publishing House; 1999: 795
- 3 Kemertelidze EP, Kemoklidze ZS, Dekanosidze GE, Bereznyakova AI. Isolation and pharmacological characterization of triterpenoid glycosides from Fatsia japonica cultivated in Georgia. Pharm Chem J 2001; 35: 429-432
- 4 Xin WX, Ye XW, Yu SR, Lian XY, Zhang ZZ. New apoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar Drugs 2012; 10: 2388-2402
- 5 Guo X, Shen L, Tong YH, Zhang J, Wu G, He Q, Yu SR, Ye XW, Zou LB, Zhang ZZ, Lian XY. Antitumor activity of caffeic acid 3,4-dihydroxyphenethyl ester and its pharmacokinetic and metabolic properties. Phytomedicine 2013; 20: 904-912
- 6 Grishkovets VI, Loloiko AA, Shashkov AS, Chirva VYa. Triterpene glycosides of Hedera taurica. VI. Structure of hederosides G, H1, H2, and I from berries of crime ivy. Khim Prirod Soed 1990; 6: 779-783
- 7 Wang HB, Mayer R, Rucher G. Triterpenoid glycosides from Stauntonia hexaphylla . Phytochemistry 1993; 33: 1469-1473
- 8 Strigina LI, Chetyrina NS, Isakov VV. Cauloside G, a new triterpenoid glycoside from Caulophyllum robustum. Identification of Cauloside C. Khim Prirod Soed 1976; 15: 779-783
- 9 Strigina LI, Chetyrina NS, Isakov VV, Elkin YuN, Dzizenko AK, Elyakov GB. Cauloside D, a new triterpenoid glycoside from Caulophyllum robustum. Identification of Cauloside A. Khim Prirod Soed 1975; 14: 1583-1586
- 10 Higuchi R, Kawasaki T. Seed saponins of Akebia quinata. II. Hederagenin 3,28-O-bisglycosides. Chem Pharm Bull 1972; 20: 2143-2149
- 11 Grishkovets VI, Panov DA, Kachala VV, Shashkov AS. Triterpene glycosides from Kalopanax septemlobum. 1. Glycosides A, B, C, F, G1, G2, I2, H, and J from leaves of Kalopanax septemlobum var. maximowichii introduced to Crimea. Chem Nat Compd 2005; 41: 194-199
- 12 Shao C, Kasai R, Xu J, Tanaka O. Saponins from leaves of Acanthopanax senticosus Harm., Ciwujia. II. Structures of ciwujiannosides A1, A2, A3, A4, and D3. Chem Pharm Bull 1989; 37: 42-45
- 13 Jiang W, Li W, Han L, Liu L, Zhang Q, Zhang S, Nikaido T, Koike K. Biologically active triterpenoid saponins from Acanthopanax senticosus . J Nat Prod 2006; 69: 1577-1581
- 14 Shao C, Kasai R, Xu J, Tanaka O. Saponins from leaves of Acanthopanax senticosus Harms., Ciwujia: structures of ciwujiannosides B, C1, C2, C3, C4, D1, D2, and E. Chem Pharm Bull 1988; 36: 601-608
- 15 Kang SS. Saponins from the roots of Pulsatilla koreana . Arch Pharm Res 1989; 12: 42-47
- 16 Anthonsen T, Bruun T, Hemmer E, Holme D, Lamvik A, Sunde E, Soerensen NA. Baccharis oxide, a new triterpenoid from Baccharis halimifolia . Acta Chem Scand 1970; 24: 2479-2488
- 17 Masuda K, Shiojima K, Ageta H. Fern constituents: six tetracyclic triterpenoid hydrocarbons having different carbon skeletons, isolated from Lemmaphyllum microphyllum var. obovatum . Chem Pharm Bull 1983; 31: 2530-2533
- 18 Shoji N, Umeyama A, Taira Z, Takemoto T, Nomoto K, Mizukawa K, Ohizumi YJ. Chemical structure of hosenkol-A, the first example of the natural baccharane triterpenoid of the missing intermediate to shionane and lupine. Chem Soc Chem Commun 1983; 16: 871-873
- 19 Oksuz S, Serin S. Triterpenes of Centaurea ptosimopappoides . Phytochemistry 1997; 46: 545-548
- 20 Yang H, Xie J, Sun H. New baccharane-type triterpenoid isolated from the roots of Saussurea lappa . Zhiwu Xuebao 1997; 39: 667-669
- 21 Hwang BY, Su BN, Chai HB, Mi QW, Kardono LBS, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris . J Org Chem 2004; 69: 3350-3358
- 22 Salim AA, Chai HB, Rachman I, Riswan S, Kardono LB, Farnsworth NR, Carcache-Blanco EJ, Kinghorn AD. Constituents of the leaves and stem bark of Aglaia foveolata . Tetrahedron 2007; 63: 7926-7934
- 23 Fujioka T, Iwamoto M, Iwase Y, Hachiyama S, Okabe H, Mihashi K, Yamauchi T. Studies on the constituents of Actinostemma lobatum Maxim. (Cucurbitaceae). Structures of triterpene glycosides isolated from the herb. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1988; 30: 165-172
- 24 Shoji N, Umeyama A, Saitou N, Yoshikawa K, Kan Y, Arihara S. Hosenkosides A, B, C, D, and E, novel baccharane glycosides from the seeds of Impatiens balsamina . Tetrahedron 1994; 50: 4973-4986
- 25 Patil SA, Hosni-Ahmed A, Jones TS, Patil R, Pfeffer LM, Miller DD. Novel approaches to glioma drug design and drug screening. Expert Opin Drug Discov 2013; 8: 1135-1151