Geburtshilfe Frauenheilkd 2013; 73(12): 1228-1235
DOI: 10.1055/s-0033-1360178
DGGG Review
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Breast Cancer Risk – From Genetics to Molecular Understanding of Pathogenesis

Mammakarzinomrisiko – Genetik und molekulare Mechanismen der Pathogenese
P. A. Fasching
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
A. B. Ekici
2   Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
,
D. L. Wachter
3   Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
,
A. Hein
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
C. M. Bayer
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
L. Häberle
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
C. R. Loehberg
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
M. Schneider
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
S. M. Jud
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
K. Heusinger
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
M. Rübner
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
C. Rauh
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
M. R. Bani
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
M. P. Lux
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
,
R. Schulz-Wendtland
4   Institute of Diagnostic Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
,
A. Hartmann
3   Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
,
M. W. Beckmann
1   Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
› Author Affiliations
Further Information

Publication History

received 01 December 2013
revised 01 December 2013

accepted 02 December 2013

Publication Date:
20 December 2013 (online)

Abstract

Several advancements over the last decade have triggered the developments in the field of breast cancer risk research. One of them is the availability of the human genome sequence along with cheap genotyping possibilities. Another is the globalization of research, which has led to the growth of research collaboration into large international consortia that facilitate the pooling of clinical and genotype data of hundreds of thousands of patients and healthy control individuals. This review concerns with the recent developments in breast cancer risk research and focuses on the discovery of new genetic breast cancer risk factors and their meaning in the context of established non-genetic risk factors. Finally the clinical application is highly dependent on the accuracy of breast cancer risk prediction models, not only for all breast cancer patients, but also for molecular subtypes, preferably for those which are associated with an unfavorable prognosis. Recently risk prediction incorporates all possible risk factors, which include epidemiological risk factors, mammographic density and genetic risk factors.

Zusammenfassung

In den letzten Jahren sind, begünstigt durch einige Fortschritte, neue Entdeckungen auf dem Gebiet der Erforschung des Brustkrebserkrankungsrisikos gemacht worden. Zum einen stehen nach der Veröffentlichung des Referenz-Genoms preiswerte Genotypisierungsmethoden zur Verfügung und zum anderen haben sich Forschungskooperationen im Rahmen der Globalisierung in riesige Konsortien weiterentwickelt. In diesen Konsortien stehen genetische und nicht genetische Informationen von mehreren hunderttausend Brustkrebspatientinnen und gesunden Kontrollpersonen zur Verfügung. Diese Übersichtsarbeit stellt die jüngsten Entwicklungen und Entdeckungen sowohl für genetische Risikofaktoren als auch für deren Interaktion mit etablierten klinischen und epidemiologischen Risikofaktoren dar. Da die klinische Anwendung von der Genauigkeit einer Risikoprädiktion abhängig ist, versuchen Risikoprädiktionsmodelle so viele Risikofaktoren wie möglich in die Prädiktion des Erkrankungsrisikos mit einzubeziehen. Die Risikoprädiktion sollte sich nicht nur auf alle Frauen und Brustkrebspatientinnen beziehen, sondern, wenn möglich, auch das Risiko für molekulare Subtypen berücksichtigen. Insbesondere die Risikoprädiktion für molekulare Subtypen, wie das triple-negative Mammakarzinom, wären von besonderer Bedeutung.

 
  • References

  • 1 Melcher C, Scholz C, Jager B et al. Breast cancer: state of the art and new findings. Geburtsh Frauenheilk 2012; 72: 215-224
  • 2 Kolberg HC, Luftner D, Lux MP et al. Breast cancer 2012 – new aspects. Geburtsh Frauenheilk 2012; 72: 602-615
  • 3 Kummel S, Kolberg HC, Luftner D et al. Breast cancer 2011 – new aspects. Geburtsh Frauenheilk 2011; 71: 939-953
  • 4 Schmidt M, Fasching PA, Beckmann MW et al. Biomarkers in breast cancer – an update. Geburtsh Frauenheilk 2012; 72: 819-832
  • 5 Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66-71
  • 6 Wooster R, Bignell G, Lancaster J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378: 789-792
  • 7 Fasching PA, Gayther S, Pearce L et al. Role of genetic polymorphisms and ovarian cancer susceptibility. Mol Oncol 2009; 3: 171-181
  • 8 Michailidou K, Hall P, Gonzalez-Neira A et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013; 45: 353-361
  • 9 Bojesen SE, Pooley KA, Johnatty SE et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013; 45: 371-384
  • 10 Garcia-Closas M, Couch FJ, Lindstrom S et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 2013; 45: 392-398
  • 11 Couch FJ, Wang X, McGuffog L et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genetics 2013; 9: e1003212
  • 12 Kim Y, Kim J, Lee HD et al. Spectrum of EGFR gene copy number changes and KRAS gene mutation status in Korean triple negative breast cancer patients. PLoS One 2013; 8: e79014
  • 13 Smolarz B, Zadrozny M, Duda-Szymanska J et al. RAD51 genotype and triple-negative breast cancer (TNBC) risk in Polish women. Pol J Pathol 2013; 64: 39-43
  • 14 Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triple-negative breast cancer. Cancer Res 2013; 73: 2025-2030
  • 15 Haiman CA, Chen GK, Vachon CM et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 2011; 43: 1210-1214
  • 16 Stevens KN, Fredericksen Z, Vachon CM et al. 19p13.1 is a triple negative-specific breast cancer susceptibility locus. Cancer Res 2012; 72: 1795-1803
  • 17 Siddiq A, Couch FJ, Chen GK et al. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum Mol Genet 2012; 21: 5373-5384
  • 18 Lambe M, Hsieh C, Trichopoulos D et al. Transient increase in the risk of breast cancer after giving birth. N Engl J Med 1994; 331: 5-9
  • 19 Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 2002; 360: 187-195
  • 20 Yang XR, Chang-Claude J, Goode EL et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 2011; 103: 250-263
  • 21 Nickels S, Truong T, Hein R et al. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genetics 2013; 9: e1003284
  • 22 Lanigan F, OʼConnor D, Martin F et al. Molecular links between mammary gland development and breast cancer. Cell Mol Life Sci 2007; 64: 3159-3184
  • 23 Milne RL, Gaudet MM, Spurdle AB et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res 2010; 12: R110
  • 24 McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 1159-1169
  • 25 Heusinger K, Loehberg CR, Haeberle L et al. Mammographic density as a risk factor for breast cancer in a German case-control study. Eur J Cancer Prev 2011; 20: 1-8
  • 26 Boyd NF, Guo H, Martin LJ et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356: 227-236
  • 27 Fasching PA, Heusinger K, Loehberg CR et al. Influence of mammographic density on the diagnostic accuracy of tumor size assessment and association with breast cancer tumor characteristics. Eur J Radiol 2006; 60: 398-404
  • 28 Heusinger K, Jud SM, Haberle L et al. Association of mammographic density with hormone receptors in invasive breast cancers: results from a case-only study. Int J Cancer 2012; 131: 2643-2649
  • 29 Heusinger K, Jud SM, Haberle L et al. Association of mammographic density with the proliferation marker Ki-67 in a cohort of patients with invasive breast cancer. Breast Cancer Res Treat 2012; 135: 885-892
  • 30 DeFilippis RA, Chang H, Dumont N et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov 2012; 2: 826-839
  • 31 Vachon CM, Scott CG, Fasching PA et al. Common breast cancer susceptibility variants in LSP1 and RAD51L1 are associated with mammographic density measures that predict breast cancer risk. Cancer Epidemiol Biomarkers Prev 2012; 21: 1156-1166
  • 32 Fasching PA, Pharoah PD, Cox A et al. The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 2012; 21: 3926-3939
  • 33 Berry DA, Iversen jr. ES, Gudbjartsson DF et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 2002; 20: 2701-2712
  • 34 Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 1998; 62: 145-158
  • 35 Parmigiani G. BRCAPRO. 2004 Online: http://astor.som.jhmi.edu/BayesMendel/brcapro.html last access: 01.11.2011
  • 36 Antoniou AC, Cunningham AP, Peto J et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 2008; 98: 1457-1466
  • 37 Antoniou AC, Pharoah PP, Smith P et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 2004; 91: 1580-1590
  • 38 Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 2004; 23: 1111-1130
  • 39 Antoniou A. BOADICEA. 2009 Online: http://www.srl.cam.ac.uk/genepi/boadicea/boadicea_home.html last access: 01.11.2011
  • 40 National Institutes of Health. Breast Cancer Risk Assessment Tool. 2011 Online: http://www.cancer.gov/bcrisktool/ last access: 01.11.2011
  • 41 Gail MH, Benichou J. Validation studies on a model for breast cancer risk. J Natl Cancer Inst 1994; 86: 573-575
  • 42 Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 1993; 28: 115-120
  • 43 Darabi H, Czene K, Zhao W et al. Breast cancer risk prediction and individualised screening based on common genetic variation and breast density measurement. Breast Cancer Res 2012; 14: R25
  • 44 Tice JA, Cummings SR, Smith-Bindman R et al. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 2008; 148: 337-347
  • 45 Azzato EM, Tyrer J, Fasching PA et al. Association between a germline OCA2 polymorphism at chromosome 15q13.1 and estrogen receptor-negative breast cancer survival. J Natl Cancer Inst 2010; 102: 650-662
  • 46 Antoniou AC, Wang X, Fredericksen ZS et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010; 42: 885-892
  • 47 Broeks A, Schmidt MK, Sherman ME et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 2011; 20: 3289-3303
  • 48 Stevens KN, Vachon CM, Lee AM et al. Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 2011; 71: 6240-6249
  • 49 Milne RL, Benitez J, Nevanlinna H et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 2009; 101: 1012-1018
  • 50 Fasching PA, Ekici AB, Adamietz BR et al. Breast cancer risk – genes, environment and clinics. Geburtsh Frauenheilk 2011; 71: 1056-1066
  • 51 Thomas G, Jacobs KB, Kraft P et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 2009; 41: 579-584
  • 52 Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2007; 39: 865-869
  • 53 Cox A, Dunning AM, Garcia-Closas M et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 2007; 39: 352-358
  • 54 Ahmed S, Thomas G, Ghoussaini M et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009; 41: 585-590
  • 55 Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2008; 40: 703-706
  • 56 Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007; 447: 1087-1093
  • 57 Zheng W, Long J, Gao YT et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 2009; 41: 324-328
  • 58 Turnbull C, Ahmed S, Morrison J et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 2010; 42: 504-507
  • 59 Fletcher O, Johnson N, Orr N et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst 2011; 103: 425-435
  • 60 French JD, Ghoussaini M, Edwards SL et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet 2013; 92: 489-503
  • 61 Ghoussaini M, Fletcher O, Michailidou K et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 2012; 44: 312-318
  • 62 Milne RL, Antoniou AC. Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Ann Oncol 2011; 22 (Suppl. 01) i11-i17
  • 63 Antoniou AC, Sinilnikova OM, Simard J et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 2007; 81: 1186-1200
  • 64 Engel C, Versmold B, Wappenschmidt B et al. Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 2010; 19: 2859-2868
  • 65 Antoniou AC, Spurdle AB, Sinilnikova OM et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 2008; 82: 937-948
  • 66 Antoniou AC, Sinilnikova OM, McGuffog L et al. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 2009; 18: 4442-4456
  • 67 Antoniou AC, Kartsonaki C, Sinilnikova OM et al. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 2011; 20: 3304-3321
  • 68 Ou J, Wu T, Sijmons R et al. Prevalence of BRCA1 and BRCA2 germline mutations in breast cancer women of multiple ethnic region in northwest China. J Breast Cancer 2013; 16: 50-54
  • 69 Hartman AR, Kaldate RR, Sailer LM et al. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer 2012; 118: 2787-2795
  • 70 Gonzalez-Angulo AM, Timms KM, Liu S et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 2011; 17: 1082-1089
  • 71 Lips EH, Mulder L, Oonk A et al. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer 2013; 108: 2172-2177