Subscribe to RSS
DOI: 10.1055/s-0033-1359960
Neue Erkenntnisse zur Pathogenese und Ätiologie der koronaren Herzerkrankung
New insights in pathogenesis and etiology of coronary artery diseasePublication History
04 November 2013
09 December 2013
Publication Date:
20 January 2014 (online)
Zusammenfassung
Im klinischen Alltag beruht die nicht-invasive Diagnose „Koronare Herzkrankheit“ auf dem klinischen Befund, dem Nachweis einer Ischämie im Ruhe- oder im Belastungs-EKG, ggf. mit Erhöhungen von Herzenzymen. Durch die kompensatorische Vergrößerung der Gefäßdurchmesser zu Beginn des Plaquewachstums, dem sog. Glagov-Effekt, entgehen allerdings frühe Stadien der Plaqueentwicklung dem angiografischen Nachweis. Mittels Koronarangiografie werden Veränderungen der Herzkranzgefäße erst sichtbar, wenn sich erkennbare Lumeneinengungen im Vergleich zum Referenzgefäßsegment zeigen. Dadurch entstehen im klinischen Alltag Diskrepanzen, z. B. Troponionerhöhungen und transmurale Ischämien ohne angiographisch sichtbare Koronarveränderungen. Diagnostische Verfahren wie der Intravasale Ultraschall, die optische Kohärenz Tomographie, die Messungen der Vasomotion und die Computertomographie erfassen auch frühere Stadien der koronaren Herzkrankheit und tragen somit zur Klärung bei. Darüber hinaus führen Plaqueruptur und Plaquerosion zu akuten oder rezidivierenden Mikroembolisierungen des Myokards mit nachfolgenden Herzmuskelnekrosen.
Diese neuen Erkenntnisse zeigen, dass sowohl die Früherkennung der Atherosklerose, wie auch die weitere Abklärung bei angiografisch nicht erklärbaren kardio-vaskulärer Ereignissen nur mit dem konsequenten Einsatz neuer Untersuchungstechniken möglich ist. Der Begriff „Ausschluß KHK“ nach Herzkatheteruntersuchung sollte zu Gunsten des Ausdruckes „Angiografisch kein Anhalt für stenosierende KHK“ ersetzt werden und zusätzliche Untersuchungsmethoden zur Klärung der Pathophysiologie zum Einsatz kommen.
Abstract
In clinical practice the non-invasive diagnosis of "coronary heart disease" is based on the clinical findings , the detection of ischemia at rest or during exercise, and elevations of cardiac enzymes. However, due to the compensatory enlargement of the vessel diameter at the beginning of plaque growth, the so-called Glagov effect, early stages of plaque development are missed by the angiography. By means of coronary angiography, changes of the coronary arteries become visible only in patients with angiographically recognizable lumen narrowing compared to the reference vessel segment. Thus, early or diffuse stages of atherosclerosis cannot be detected by ECG, stress-tests or coronary angiography. This limitation explains discrepancies, like positive troponin-test and even transmural ischemia, without angiographic visible coronary lumen narrowing. Diagnostic procedures such as intravascular ultrasound, optical coherence tomography, measurements of vasomotion and computed tomography can, in contrast, detect earlier stages of coronary artery disease and thus contribute to clarification in these patients. In addition, plaque rupture and plaque-erosion lead to acute or recurrent microembolism to distal myocardium with subsequent myocardial necrosis.
In patients with formerly unexplained cardiovascular events, intravascular ultrasound, optical coherence tomography, and measurements of vasomotion help to understand the underlying pathophysiology. In the report after cardiac catheterization, the term “ ruled out coronary heart disease " should be replaced by "No signs of obstructive coronary heart disease" and additional testing should be performed as necessary.
-
Literatur
- 1 Ambrose JA, Winters SL, Arora RR et al. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 1986; 7: 472-478
- 2 Bahrmann P, Werner GS, Heusch G et al. Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris undergoing elective percutaneous coronary interventions. Circulation 2007; 115: 600-608
- 3 von Birgelen C, Klinkhart W, Mintz GS et al. Size of emptied plaque cavity following spontaneous rupture is related to coronary dimensions, not to the degree of lumen narrowing. A study with intravascular ultrasound in vivo. Heart 2000; 84: 483-488
- 4 von Birgelen C, Klinkhart W, Mintz GS et al. Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol 2001; 37: 1864-1870
- 5 Breuckmann F, Nassenstein K, Bucher C et al. Systematic analysis of functional and structural changes after coronary microembolization: a cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging 2009; 2: 121-130
- 6 Burke AP, Kolodgie FD, Farb A et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001; 103: 934-940
- 7 Casscells W, Hathorn B, David M et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996; 347: 1447-1451
- 8 Choi JW, Gibson CM, Murphy SA et al. Myonecrosis following stent placement: association between impaired TIMI myocardial perfusion grade and MRI visualization of microinfarction. Catheter Cardiovasc Interv 2004; 61: 472-476
- 9 Davies MJ, Thomas AC. Plaque fissuring – the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985; 53: 363-373
- 10 Di Vito L, Prati F, Arbustini E et al. A „stable“ coronary plaque rupture documented by repeated OCT studies. JACC Cardiovasc Imaging 2013; 6: 835-836
- 11 Dirschinger J, Kastrati A, Neumann F-J et al. Influence of balloon pressure during stent placement in native coronary arteries on early and late angiographic and clinical outcome: A randomized evaluation of high-pressure inflation. Circulation 1999; 100: 918-923
- 12 Erbel R, Ge J, Görge G et al. Intravascular ultrasonography in coronary heart disease. Current aspects in the pathogenesis. Dtsch Med Wochenschr 1995; 120: 847-854
- 13 Erbel R, Ge J, Görge G et al. Intravascular ultrasound classification of atherosclerotic lesions according to American Heart Association recommendation. Coron Artery Dis 1999; 10: 489-499
- 14 Erbel R, Heusch G. Spontaneous and iatrogenic microembolization. A new concept for the pathogenesis of coronary artery disease. Herz 1999; 24: 493-495
- 15 Erbel R, Heusch G. Coronary microembolization. J Am Coll Cardiol 2000; 36: 22-24
- 16 Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71: 699-708
- 17 Farb A, Burke AP, Tang AL et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93: 1354-1363
- 18 Fernández-Ortiz A, Badimon JJ, Falk E et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23: 1562-1569
- 19 Fuchs S, Lavi I, Tzang O et al. Necrotic core and thin cap fibrous atheroma distribution in native coronary artery lesion-containing segments: a virtual histology intravascular ultrasound study. Coron Artery Dis 2011; 22: 339-344
- 20 Gauss S, Achenbach S, Pflederer T et al. Assessment of coronary artery remodelling by dual-source CT: a head-to-head comparison with intravascular ultrasound. Heart 2011; 97: 991-997
- 21 Ge J, Erbel R, Zamorano J et al. Coronary artery remodeling in atherosclerotic disease: an intravascular ultrasonic study in vivo. Coron Artery Dis 1993; 4: 981-986
- 22 Ge J, Erbel R, Gerber T et al. Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo. Br Heart J 1994; 71: 572-578
- 23 Ge J, Liu F, Kearney P et al. Intravascular ultrasound approach to the diagnosis of coronary artery aneurysms. Am Heart J 1995; 130: 765-771
- 24 Ge J, Haude M, Görge G et al. Silent healing of spontaneous plaque disruption demonstrated by intracoronary ultrasound. Eur Heart J 1995; 16: 1149-1151
- 25 Ge J, Erbel R, Zamorano J et al. Improvement of coronary morphology and blood flow after stenting. Assessment by intravascular ultrasound and intracoronary Doppler. Int J Card Imaging 1995; 11: 81-87
- 26 Gerber TC, Erbel R, Görge G et al. Extent of atherosclerosis and remodeling of the left main coronary artery determined by intravascular ultrasound. Am J Cardiol 1994; 73: 666-671
- 27 Glagov S, Weisenberg E, Zarins CK et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371-1375
- 28 Gössl M, von Birgelen C, Mintz GS et al. Volumetric assessment of ulcerated ruptured coronary plaques with three-dimensional intravascular ultrasound in vivo. Am J Cardiol 2003; 91: 992-996
- 29 Herrmann J, Haude M, Lerman A et al. Abnormal coronary flow velocity reserve after coronary intervention is associated with cardiac marker elevation. Circulation 2001; 103: 2339-2345
- 30 Heusch G, Kleinbongard P, Böse D et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation 2009; 120: 1822-1836
- 31 Heusch G. The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. Circ Res 2013; 112: 1535-1537
- 32 Iakovou I, Mintz GS, Dangas G et al. Increased CK-MB release is a “trade-off” for optimal stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 2003; 42: 1900-1905
- 33 Jeremias A, Ge J, Erbel R. New insight into plaque healing after plaque rupture with subsequent thrombus formation detected by intravascular ultrasound. Heart 1997; 77: 293
- 34 Kearney P, Erbel R, Rupprecht HJ et al. Differences in the morphology of unstable and stable coronary lesions and their impact on the mechanisms of angioplasty. An in vivo study with intravascular ultrasound. Eur Heart J 1996; 17: 721-730
- 35 Kume T, Okura H, Fukahara K et al. Visualized of Coronary Plaque Vasa Vasorum by Intravascular Ultrasound. JACC Cardiol Interv 2013; 6: 985
- 36 Madder RD, Goldstein JA, Madden SP et al. Detection by Near-Infrared Spectroscopy of Large Lipid Core Plaques at Culprit Sites in Patients With Acute ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc Interv 2013; 6: 838-846
- 37 Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 1999; 82: 265-268
- 38 Maurovich-Horvat P, Hoffmann U, Vorpahl M et al. The napkin-ring sign: CT signature of high-risk coronary plaques?. JACC Cardiovasc Imaging 2010; 3: 440-444
- 39 Meyer J, Schmitz H, Erbel R et al. Treatment of unstable angina pectoris with percutaneous transluminal coronary angioplasty (PTCA). Cathet Cardiovasc Diagn 1981; 7: 361-371
- 40 Meyer J, Schmitz HJ, Kiesslich T et al. Percutaneous transluminal coronary angioplasty in patients with stable and unstable angina pectoris: analysis of early and late results. Am Heart J 1983; 106: 973-980
- 41 Miyamoto Y, Okura H, Kume T et al. Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS. JACC Cardiovasc Imaging 2011; 4: 638-646
- 42 Nakazawa G, Otsuka F, Nakano M et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 2011; 57: 1314-1322
- 43 Nassenstein K, Breuckmann F, Bucher C et al. How much myocardial damage is necessary to enable detection of focal late gadolinium enhancement at cardiac MR imaging?. Radiology 2008; 249: 829-835
- 44 Qian J, Ge J, Baumgart D et al. Prevalence of microvascular disease in patients with significant coronary artery disease. Herz 1999; 24: 548-557
- 45 Schaar JA, Regar E, Mastik F et al. Incidence of high-strain patterns in human coronary arteries: assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation 2004; 109: 2716-2719
- 46 Schmermund A, Baumgart D, Möhlenkamp S et al. Natural history and topographic pattern of progression of coronary calcification in symptomatic patients: An electron-beam CT study. Arterioscler Thromb Vasc Biol 2001; 21: 421-426
- 47 Skyschally A, Leineweber K, Gres P et al. Coronary microembolization. Basic Res Cardiol 2006; 101: 373-382
- 48 Stary HC, Chandler AB, Dinsmore RE et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92: 1355-1374
- 49 Takumi T, Lee S, Hamasaki S et al. Limitation of angiography to identify the culprit plaque in acute myocardial infarction with coronary total occlusion utility of coronary plaque temperature measurement to identify the culprit plaque. J Am Coll Cardiol 2007; 50: 2197-2203
- 50 Thielmann M, Dörge H, Martin C et al. Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 2002; 90: 807-813
- 51 Zamorano J, Erbel R, Ge J et al. Spontaneous plaque rupture visualized by intravascular ultrasound. Eur Heart J 1994; 15: 131-133
- 52 Zeiher AM, Drexler H, Wollschläger H et al. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391-401
- 53 Zotz RJ, Erbel R, Philipp A et al. High-speed rotational angioplasty-induced echo contrast in vivo and in vitro optical analysis. Cathet Cardiovasc Diagn 1992; 26: 98-109
- 54 Erbel R, Koronare Herzerkrankung. In: Thelen M, Erbel R, Kreitner K-F, Barkhausen J Hrsg. Bildgebende Kardiodiagnostik. Stuttgart: Thieme; 2007: 174-185