Semin Neurol 2013; 33(04): 417-422
DOI: 10.1055/s-0033-1359313
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Genetics of Dementia

Janice L. Farlow
1   Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
,
Tatiana Foroud
1   Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. November 2013 (online)

Abstract

Over the past decade, there has been a dramatic evolution of genetic methodologies that can be used to identify genes contributing to disease. Initially, the focus was primarily on classical linkage analysis; more recently, genomewide association studies, and high-throughput whole genome and whole exome sequencing have provided efficient approaches to detect common and rare variation contributing to disease risk. Application of these methodologies to dementias has led to the nomination of dozens of causative and susceptibility genes, solidifying the recognition that genetic factors are important contributors to the disease processes. In this review, the authors focus on current knowledge of the genetics of Alzheimer's disease and frontotemporal lobar degeneration. A working understanding of the genes relevant to common dementias will become increasingly critical, as options for genetic testing and eventually gene-specific therapeutics are developed.

 
  • References

  • 1 Goate A, Chartier-Harlin MC, Mullan M , et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349 (6311) 704-706
  • 2 Levy E, Carman MD, Fernandez-Madrid IJ , et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1990; 248 (4959) 1124-1126
  • 3 Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984; 122 (3) 1131-1135
  • 4 Brouwers N, Sleegers K, Van Broeckhoven C. Molecular genetics of Alzheimer's disease: an update. Ann Med 2008; 40 (8) 562-583
  • 5 Sherrington R, Rogaev EI, Liang Y , et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995; 375 (6534) 754-760
  • 6 Levy-Lahad E, Wasco W, Poorkaj P , et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 269 (5226) 973-977
  • 7 Rogaev EI, Sherrington R, Rogaeva EA , et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995; 376 (6543) 775-778
  • 8 Finckh U, Müller-Thomsen T, Mann U , et al. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet 2000; 66 (1) 110-117
  • 9 Lleó A, Blesa R, Queralt R , et al. Frequency of mutations in the presenilin and amyloid precursor protein genes in early-onset Alzheimer disease in Spain. Arch Neurol 2002; 59 (11) 1759-1763
  • 10 Piscopo P, Marcon G, Piras MR , et al. A novel PSEN2 mutation associated with a peculiar phenotype. Neurology 2008; 70 (17) 1549-1554
  • 11 De Strooper B, Saftig P, Craessaerts K , et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998; 391 (6665) 387-390
  • 12 Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 2012; 33 (9) 1340-1344
  • 13 Jarrett JT, Berger EP, Lansbury Jr PT. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 1993; 32 (18) 4693-4697
  • 14 Bird TD. Alzheimer disease overview. GeneReviews. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1161/ . Accessed October 1, 2013
  • 15 Gatz M, Reynolds CA, Fratiglioni L , et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006; 63 (2) 168-174
  • 16 Zlokovic BV. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol 2013; 70 (4) 440-444
  • 17 Farrer LA, Cupples LA, Haines JL , et al; APOE and Alzheimer Disease Meta Analysis Consortium. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278 (16) 1349-1356
  • 18 Maestre G, Ottman R, Stern Y , et al. Apolipoprotein E and Alzheimer's disease: ethnic variation in genotypic risks. Ann Neurol 1995; 37 (2) 254-259
  • 19 Mayeux R, Stern Y, Ottman R , et al. The apolipoprotein epsilon 4 allele in patients with Alzheimer's disease. Ann Neurol 1993; 34 (5) 752-754
  • 20 Ueki A, Kawano M, Namba Y, Kawakami M, Ikeda K. A high frequency of apolipoprotein E4 isoprotein in Japanese patients with late-onset nonfamilial Alzheimer's disease. Neurosci Lett 1993; 163 (2) 166-168
  • 21 Corder EH, Saunders AM, Risch NJ , et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7 (2) 180-184
  • 22 Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease. Lancet Neurol 2013; 12 (1) 92-104
  • 23 Bertram L, Tanzi RE. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 2008; 9 (10) 768-778
  • 24 Paulson HL, Igo I. Genetics of dementia. Semin Neurol 2011; 31 (5) 449-460
  • 25 Naj AC, Jun G, Beecham GW , et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet 2011; 43 (5) 436-441
  • 26 Rohrer JD, Guerreiro R, Vandrovcova J , et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009; 73 (18) 1451-1456
  • 27 Sieben A, Van Langenhove T, Engelborghs S , et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 2012; 124 (3) 353-372
  • 28 Hutton M, Lendon CL, Rizzu P , et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393 (6686) 702-705
  • 29 Poorkaj P, Bird TD, Wijsman E , et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 1998; 43 (6) 815-825
  • 30 Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 1998; 95 (13) 7737-7741
  • 31 Cohn-Hokke PE, Elting MW, Pijnenburg YA, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Ak J Med Genet B Neuropsychiatr Genet 2012; 159B (6) 628-643
  • 32 Baker M, Mackenzie IR, Pickering-Brown SM , et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006; 442 (7105) 916-919
  • 33 Cruts M, Gijselinck I, van der Zee J , et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006; 442 (7105) 920-924
  • 34 Gass J, Cannon A, Mackenzie IR , et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 2006; 15 (20) 2988-3001
  • 35 Galimberti D, Scarpini E. Genetics of frontotemporal lobar degeneration. Front Neurol 2012; 3: 52
  • 36 DeJesus-Hernandez M, Mackenzie IR, Boeve BF , et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72 (2) 245-256
  • 37 Gijselinck I, Van Langenhove T, van der Zee J , et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 2012; 11 (1) 54-65
  • 38 Renton AE, Majounie E, Waite A , et al; ITALSGEN Consortium. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72 (2) 257-268
  • 39 Cruts M, Gijselinck I, Van Langenhove T, van der Zee J, Van Broeckhoven C. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci 2013; 36 (8) 450-459
  • 40 Van Deerlin VM, Sleiman PMA, Martinez-Lage M , et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 2010; 42 (3) 234-239
  • 41 Goldman JS, Hahn SE, Catania JW , et al; American College of Medical Genetics and the National Society of Genetic Counselors. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet Med 2011; 13 (6) 597-605
  • 42 Goldman JS, Rademakers R, Huey ED , et al. An algorithm for genetic testing of frontotemporal lobar degeneration. Neurology 2011; 76 (5) 475-483