Zahnmedizin up2date 2015; 9(1): 35-52
DOI: 10.1055/s-0033-1358073
Oralchirurgie
Georg Thieme Verlag KG Stuttgart · New York

Knochenquantität und Knochenqualität unter implantologischen Aspekten

Matthias Karl
,
Tim Krafft
Further Information

Publication History

Publication Date:
23 January 2015 (online)

Einleitung

Der Erfolg dentaler Implantate hat die Zahnmedizin in vielen Bereichen revolutioniert. Sie sind heute fester Bestandteil prothetischer Planungen. Im Bestreben, die Anwendung zahnärztlicher Implantate vorhersagbar und sicherer zu machen, erlangten die Parameter Knochenquantität und Knochenqualität große Bedeutung. Sie stellen für den langfristigen funktionellen wie auch ästhetischen Behandlungserfolg wichtige prognostische Faktoren dar.

Merke: Eine adäquate Knochenquantität gilt als Voraussetzung dafür, die Implantate unter prothetischen Gesichtspunkten optimal zu positionieren.

Die Knochenqualität beeinflusst die notwendige Primärstabilität und sichert somit langfristig die Osseointegration.

 
  • Literatur

  • 1 Atwood D. Postextraction changes in the adult mandible as illustrated by microradiographs of midsagittal sections and serial cephalometric roentgenograms. J Prosthet Dent 1963; 13: 810-824
  • 2 Fallschüssel G. Untersuchungen zur Anatomie des zahnlosen Oberkiefers. Z Zahnärztl Implantol 1986; 2: 64
  • 3 Hürzeler MB, Fickl S, Zuhr O et al. Clinical failures and shortfalls of immediate implant procedures. Eur J Esthet Dent 2006; 1: 128-140
  • 4 Ackermann KL. Extraction site management using a natural bone mineral containing collagen: rationale and retrospective case study. Int J Periodontics Restorative Dent 2009; 29: 489-497
  • 5 Fickl S, Zuhr O, Wachtel H et al. Tissue alterations after tooth extraction with and without surgical trauma: a volumetric study in the beagle dog. J Clin Periodontol 2008; 35: 356-363
  • 6 Araújo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 2005; 32: 212-218
  • 7 Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000; 71: 546-549
  • 8 Priest GF. The esthetic challenge of adjacent implants. J Oral Maxillofac Surg 2007; 65 (7 Suppl 1) 2-12
  • 9 Renouard F, Nisand D. Short implants in the severely resorbed maxilla: a 2-year retrospective clinical study. Clin Implant Dent Relat Res 2005; 7 (Suppl. 01) S104-110
  • 10 Quinlan P, Richardson CR, Hall EE. A multipurpose template for implant placement. Implant Dent 1998; 7: 113-121
  • 11 Johansson B, Back T, Hirsch JM. Cutting torque measurements in conjunction with implant placement in grafted and nongrafted maxillas as an objective evaluation of bone density: a possible method for identifying early implant failures?. Clin Implant Dent Relat Res 2004; 6: 9-15
  • 12 Tatum jr. OH, Lebowitz MS, Tatum CA et al. Sinus augmentation. Rationale, development, long-term results. N Y State Dent J 1993; 59: 43-48
  • 13 Summers RB. A new concept in maxillary implant surgery: the osteotome technique. Compendium 1994; 15: 152 154–156; 158 passim; 162 quiz
  • 14 Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J 2014; 8: 56-65
  • 15 Catros S, Wen B, Schleier P et al. Use of a perforated scaffold-retaining abutment to achieve vertical bone regeneration around dental implants in the minipig. Int J Oral Maxillofac Implants 2013; 28: 432-443
  • 16 Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 2005; 27: 1-11
  • 17 de Oliveira RC, Leles CR, Lindh C et al. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: identification of clinical-related parameters. Clin Oral Implants Res 2012; 23: 981-986
  • 18 Giesen EB, Ding M, Dalstra M et al. Changed morphology and mechanical properties of cancellous bone in the mandibular condyles of edentate people. J Dent Res 2004; 83: 255-259
  • 19 Giesen EB, Ding M, Dalstra M et al. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 2001; 34: 799-803
  • 20 Malo MK, Rohrbach D, Isaksson H et al. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 2013; 53: 451-458
  • 21 Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 1991; 62: 2-4
  • 22 Rebaudi A, Trisi P, Cella R et al. Preoperative evaluation of bone quality and bone density using a novel CT/microCT-based hard-normal-soft classification system. Int J Oral Maxillofac Implants 2010; 25: 75-85
  • 23 Lekholm U, Zarb GA. Patient Selection and Preparation. In: Branemark P-I, Zarb GA, Albrektsson T, eds. Tissue Integrated Prostheses: Osseointegration in clinical Dentistry. Chicago, IL: Quintessence Publishing; 1985: 199-209
  • 24 Misch CE. Density of Bone: Effect on surgical Approach and Healing. In: Misch CE, ed. Contemporary Implant Dentistry. St Louis, MO: Mosby Elsevier; 2008: 645-667
  • 25 Trisi P, Rao W. Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res 1999; 10: 1-7
  • 26 Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 2001; 12: 79-84
  • 27 Vercellotti T, Vercellotti G. New bone classification for analysis of the single surgical site. In: Vercellotti T, ed. Essentials in Piezosurgery – Clinical Advantages in Dentistry. Berlin: Quintessence; 2009: 91-93
  • 28 Rozé J, Babu S, Saffarzadeh A et al. Correlating implant stability to bone structure. Clin Oral Implants Res 2009; 20: 1140-1145
  • 29 Ribeiro-Rotta RF, Lindh C, Rohlin M. Efficacy of clinical methods to assess jawbone tissue prior to and during endosseous dental implant placement: a systematic literature review. Int J Oral Maxillofac Implants 2007; 22: 289-300
  • 30 Shapurian T, Damoulis PD, Reiser GM et al. Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants 2006; 21: 290-297
  • 31 Turkyilmaz I, Tozum TF, Tumer C. Bone density assessments of oral implant sites using computerized tomography. J Oral Rehabil 2007; 34: 267-272
  • 32 Molteni R. Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116: 105-119
  • 33 Stoppie N, Pattijn V, Van Cleynenbreugel T et al. Structural and radiological parameters for the characterization of jawbone. Clin Oral Implants Res 2006; 17: 124-133
  • 34 Trisi P, Perfetti G, Baldoni E et al. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 2009; 20: 467-471
  • 35 Al-Nawas B, Wagner W, Grötz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants 2006; 21: 726-732
  • 36 Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000 2008; 47: 51-66
  • 37 Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998; 11: 491-501
  • 38 Karl M, Graef F, Heckmann S et al. Parameters of resonance frequency measurement values: a retrospective study of 385 ITI dental implants. Clin Oral Implants Res 2008; 19: 214-218
  • 39 Ersanli S, Karabuda C, Beck F et al. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol 2005; 76: 1066-1071
  • 40 Lukas D, Schulte W, König M et al. High-speed filming of the Periotest measurement. J Clin Periodontol 1992; 19: 388-391
  • 41 Winter W, Möhrle S, Holst S et al. Parameters of implant stability measurements based on resonance frequency and damping capacity: a comparative finite element analysis. Int J Oral Maxillofac Implants 2010; 25: 532-539
  • 42 Salvi GE, Gallini G, Lang NP. Early loading (2 or 6 weeks) of sandblasted and acid-etched (SLA) ITI implants in the posterior mandible. A 1-year randomized controlled clinical trial. Clin Oral Implants Res 2004; 15: 142-149
  • 43 Winter W, Krafft T, Steinmann P et al. Quality of alveolar bone – Structure dependent material properties and design of a novel measurement technique. J Mech Behav Biomed Mater 2011; 4: 541-548
  • 44 Krafft T, Winter W, Wichmann M et al. In vitro validation of a novel diagnostic device for intraoperative determination of alveolar bone quality. Int J Oral Maxillofac Implants 2012; 27: 318-328
  • 45 Karl M, Palarie V, Nacu V et al. Effect of intraoperative bone quality testing on bone healing and osseointegration of dental implants. Int J Oral Maxillofac Implants 2013; 28: 1254-1260
  • 46 Pantani F, Botticelli D, Garcia jr. IR et al. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs. Clin Oral Implants Res 2010; 21: 1264-1270
  • 47 Toyoshima T, Tanaka H, Ayukawa Y et al. Primary Stability of a Hybrid Implant Compared with Tapered and Cylindrical Implants in an Ex Vivo Model. Clin Implant Dent Relat Res 2014; DOI: 10.1111/cid.12205.
  • 48 Nkenke E, Kloss F, Wiltfang J et al. Histomorphometric and fluorescence microscopic analysis of bone remodelling after installation of implants using an osteotome technique. Clin Oral Implants Res 2002; 13: 595-602
  • 49 Szmukler-Moncler S, Piattelli A, Favero GA et al. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants Res 2000; 11: 12-25
  • 50 Romanos GE. Bone quality and the immediate loading of implants-critical aspects based on literature, research, and clinical experience. Implant Dent 2009; 18: 203-209