J Wrist Surg 2013; 02(04): 299-305
DOI: 10.1055/s-0033-1357760
Special Focus Section: New Horizons in Wrist Surgery
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Computer-Assisted Percutaneous Scaphoid Fixation: Concepts and Evolution

Erin J. Smith
1   Department of Mechanical Engineering, Queen's University, Kingston, Ontario, Canada
,
Randy E. Ellis
1   Department of Mechanical Engineering, Queen's University, Kingston, Ontario, Canada
2   School of Computing, Queen's University, Kingston, Ontario, Canada
3   Department of Surgery, Queen's University, Kingston, Ontario, Canada
,
David R. Pichora
1   Department of Mechanical Engineering, Queen's University, Kingston, Ontario, Canada
3   Department of Surgery, Queen's University, Kingston, Ontario, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
08 November 2013 (online)

Abstract

Background The treatment for undisplaced scaphoid waist fractures has evolved from conventional cast immobilization to percutaneous screw insertion. Percutaneous fixation reduces some of the risks of open surgery, but can be technically demanding and carries the risk of radiation exposure. Recently, computer-assisted percutaneous scaphoid fixation (CAPSF) has been gaining interest.

Materials and Methods Conventional percutaneous scaphoid fixation is performed under fluoroscopic guidance and involves insertion of a guide wire along the length of the scaphoid to facilitate placement of a cannulated screw. Adapting computer-assisted techniques for scaphoid fixation poses several unique challenges including patient tracking and registration.

Results To date, five groups have successfully implemented systems for CAPSF. These systems have implemented wrist immobilization strategies to resolve the issue of patient tracking and have developed unique guidance techniques incorporating 2D fluoroscope, cone-beam CT, and ultrasound, to circumvent patient-based registration.

Conclusions Computer-aided percutaneous pinning of scaphoid waist fractures can significantly reduce radiation exposure and has the potential to improve the accuracy of this procedure. This article reviews the rationale for, and the evolution of, CAPSF and describes the key principles of computer-assisted technology.

 
  • References

  • 1 Gellman H, Caputo RJ, Carter V, Aboulafia A, McKay M. Comparison of short and long thumb-spica casts for non-displaced fractures of the carpal scaphoid. J Bone Joint Surg Am 1989; 71 (3) 354-357
  • 2 Cooney WP, Dobyns JH, Linscheid RL. Fractures of the scaphoid: a rational approach to management. Clin Orthop Relat Res 1980; 149 (149) 90-97
  • 3 Streli R. Percutaneous screwing of the navicular bone of the hand with a compression drill screw (a new method) [in German]. Zentralbl Chir 1970; 95 (36) 1060-1078
  • 4 Wozasek GE, Moser KD. Percutaneous screw fixation for fractures of the scaphoid. J Bone Joint Surg Br 1991; 73 (1) 138-142
  • 5 Inoue G, Shionoya K. Herbert screw fixation by limited access for acute fractures of the scaphoid. J Bone Joint Surg Br 1997; 79 (3) 418-421
  • 6 Yip HS, Wu WC, Chang RY, So TY. Percutaneous cannulated screw fixation of acute scaphoid waist fracture. J Hand Surg [Br] 2002; 27 (1) 42-46
  • 7 Bond CD, Shin AY, McBride MT, Dao KD. Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures. J Bone Joint Surg Am 2001; 83-A (4) 483-488
  • 8 McQueen MM, Gelbke MK, Wakefield A, Will EM, Gaebler C. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid: a prospective randomised study. J Bone Joint Surg Br 2008; 90 (1) 66-71
  • 9 Modi CS, Nancoo T, Powers D, Ho K, Boer R, Turner SM. Operative versus nonoperative treatment of acute undisplaced and minimally displaced scaphoid waist fractures—a systematic review. Injury 2009; 40 (3) 268-273
  • 10 Pichler W, Windisch G, Schaffler G, Heidari N, Dorr K, Grechenig W. Computer-assisted 3-dimensional anthropometry of the scaphoid. Orthopedics 2010; 33 (2) 85-88
  • 11 Bahari S, Morris S, Broe D, Taylor C, Lenehan B, McElwain J. Radiation exposure of the hands and thyroid gland during percutaneous wiring of wrist and hand procedures. Acta Orthop Belg 2006; 72 (2) 194-198
  • 12 Giordano BD, Grauer JN, Miller CP, Morgan TL, Rechtine II GR. Radiation exposure issues in orthopaedics. J Bone Joint Surg Am 2011; 93 (12) e69 , 1–10)
  • 13 McCallister WV, Knight J, Kaliappan R, Trumble TE. Central placement of the screw in simulated fractures of the scaphoid waist: a biomechanical study. J Bone Joint Surg Am 2003; 85-A (1) 72-77
  • 14 Adams BD, Blair WF, Reagan DS, Grundberg AB. Technical factors related to Herbert screw fixation. J Hand Surg Am 1988; 13 (6) 893-899
  • 15 Dodds SD, Panjabi MM, Slade III JF. Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation. J Hand Surg Am 2006; 31 (3) 405-413
  • 16 Brown RA. A computerized tomography-computer graphics approach to stereotaxic localization. J Neurosurg 1979; 50 (6) 715-720
  • 17 Merloz P, Huberson C, Tonetti J, Eid A, Vouaillat H. Computer-assisted pedicle screw insertion. Tech Orthop 2003; 18: 149-159
  • 18 Taylor RH, Joskowicz L, Williamson B , et al. Computer-integrated revision total hip replacement surgery: concept and preliminary results. Med Image Anal 1999; 3 (3) 301-319
  • 19 Langlotz F, Bächler R, Berlemann U, Nolte LP, Ganz R. Computer assistance for pelvic osteotomies. Clin Orthop Relat Res 1998; 354 (354) 92-102
  • 20 Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res 1998; 354 (354) 49-56
  • 21 Ellis RE, Tso CY, Rudan JF, Harrison MM. A surgical planning and guidance system for high tibial osteotomy. Comput Aided Surg 1999; 4 (5) 264-274
  • 22 Athwal GS, Ellis RE, Small CF, Pichora DR. Computer-assisted distal radius osteotomy. J Hand Surg Am 2003; 28 (6) 951-958
  • 23 Langlotz F, Nolte L-P. Technical approaches to computer-assisted orthopedic surgery. Eur J Trauma 2004; 30: 1-11
  • 24 Ayache N, Cinquin P, Cohen I, Cohen L, Leitner F, Monga O. Segmentation of complex 3-D medical objects, a challenge and a requirement for computer assisted surgery planning and performance. In: Taylor ER, Lavallée S, , eds. Computer-Integrated Surgery. Cambridge, MA: MIT Press; 1995: 59-75
  • 25 Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng 2000; 2: 315-337
  • 26 Taylor RH, Lavallee S, Burdea GC, Mosges R. Computer Integrated Surgery: Technology and Clinical Application. Cambridge, MA: MIT Press; 1996
  • 27 Hofstetter R, Slomczykowski M, Sati M, Nolte LP. Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg 1999; 4 (2) 65-76
  • 28 Foley KT, Simon DA, Rampersaud YR. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 2001; 26 (4) 347-351
  • 29 Ritter D, Mitschke M, Graumann R. Markerless navigation with the intra-operative imaging modality SIREMOBIL Iso-C3D . Electromedica-Erlangen 2002; 70: 31-36
  • 30 Richter M, Geerling J, Zech S, Goesling T, Krettek C. Intraoperative three-dimensional imaging with a motorized mobile C-arm (SIREMOBIL ISO-C3D) in foot and ankle trauma care: a preliminary report. J Orthop Trauma 2005; 19 (4) 259-266
  • 31 Atesok K, Finkelstein J, Khoury A , et al. The use of intraoperative three-dimensional imaging (ISO-C3D) in fixation of intraarticular fractures. Injury 2007; 38 (10) 1163-1169
  • 32 Kendoff D, Gardner MJ, Citak M , et al. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg 2008; 128 (6) 599-605
  • 33 Haddad FS, Goddard NJ. Acute percutaneous scaphoid fixation. A pilot study. J Bone Joint Surg Br 1998; 80 (1) 95-99
  • 34 Liverneaux P. Scaphoid percutaneous osteosynthesis by screw using computer assisted surgery: an experimental study [in French]. Chir Main 2005; 24 (3-4) 169-173
  • 35 Liverneaux PA, Gherissi A, Stefanelli MB. Kirschner wire placement in scaphoid bones using fluoroscopic navigation: a cadaver study comparing conventional techniques with navigation. Int J Med Robot 2008; 4 (2) 165-173
  • 36 Walsh E, Crisco JJ, Wolfe SW. Computer-assisted navigation of volar percutaneous scaphoid placement. J Hand Surg Am 2009; 34 (9) 1722-1728
  • 37 Beek M, Abolmaesumi P, Chen T, Sellens R, Pichora D. Percutaneous scaphoid pinning using ultrasound guidance. Proc SPIE Med Imaging 2006; 6141: 203-209
  • 38 Beek M, Abolmaesumi P, Luenam S, Ellis RE, Sellens RW, Pichora DR. Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal 2008; 12 (2) 152-162
  • 39 Smith EJ, Oentoro A, Al-Sanawi H , et al. Calibration and use of intraoperative cone-beam computed tomography: an in-vitro study for wrist fracture. Med Image Comput Comput Assist Interv 2010; 13 (Pt 3) 359-366
  • 40 Smith EJ, Al-Sanawi HA, Gammon B, St John PJ, Pichora DR, Ellis RE. Volume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation. Int J CARS 2012; 7 (3) 433-444
  • 41 Smith EJ, Al-Sanawi HA, Gammon B, St John PJ, Pichora DR, Ellis RE. Comparison of 3D volume rendering to volumetric slicing of cone-beam computed tomography for navigation of percutaneous scaphoid fixation. Proceedings of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) 2011, London. Abstract #047
  • 42 Citak M, O'Loughlin PF, Kendoff D , et al. Navigated scaphoid screw placement using customized scaphoid splint: an anatomical study. Arch Orthop Trauma Surg 2010; 130 (7) 889-895
  • 43 Catala-Lehnen P, Nüchtern JV, Briem D, Klink T, Rueger JM, Lehmann W. Comparison of 2D and 3D navigation techniques for percutaneous screw insertion into the scaphoid: results of an experimental cadaver study. Comput Aided Surg 2011; 16 (6) 280-287
  • 44 Menapace KA, Larabee L, Arnoczky SP, Neginhal VS, Dass AG, Ross LM. Anatomic placement of the Herbert-Whipple screw in scaphoid fractures: a cadaver study. J Hand Surg Am 2001; 26 (5) 883-892
  • 45 Leventhal EL, Wolfe SW, Walsh EF, Crisco JJ. A computational approach to the “optimal” screw axis location and orientation in the scaphoid bone. J Hand Surg Am 2009; 34 (4) 677-684
  • 46 Levitz S, Ring D. Retrograde (volar) scaphoid screw insertion-a quantitative computed tomographic analysis. J Hand Surg Am 2005; 30 (3) 543-548
  • 47 Slade III JF, Grauer JN, Mahoney JD. Arthroscopic reduction and percutaneous fixation of scaphoid fractures with a novel dorsal technique. Orthop Clin North Am 2001; 32 (2) 247-261
  • 48 Shih JT, Lee HM, Hou YT, Tan CM. Results of arthroscopic reduction and percutaneous fixation for acute displaced scaphoid fractures. Arthroscopy 2005; 21 (5) 620-626