Klin Padiatr 2013; 225(06): 303-308
DOI: 10.1055/s-0033-1357132
Review
© Georg Thieme Verlag KG Stuttgart · New York

Targeted Therapy for Neuroblastoma: ALK Inhibitors

Zielgerichtete Therapeutika zur Behandlung des Neuroblastoms: ALK-Inhibitoren
J. H. Schulte
1   German Cancer Consortium (DKTK), Germany
2   Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
3   German Cancer Research Center (DKFZ), Heidelberg, Germany
4   Department of Pediatric Oncology and Hematology, University Children’s Hospital Essen, Germany
5   Centre for Medical Biotechnology, University Duisburg-Essen, Essen, ­Germany
,
S. Schulte
4   Department of Pediatric Oncology and Hematology, University Children’s Hospital Essen, Germany
,
L. C. Heukamp
6   Institute of Pathology, University Hospital Cologne, Germany
,
K. Astrahantseff
7   Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany
,
H. Stephan
4   Department of Pediatric Oncology and Hematology, University Children’s Hospital Essen, Germany
,
M. Fischer
8   Department of Pediatric Oncology and Hematology, Children’s Hospital, University of Cologne, Germany
9   Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
,
A. Schramm
4   Department of Pediatric Oncology and Hematology, University Children’s Hospital Essen, Germany
,
A. Eggert
7   Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
28 October 2013 (online)

Abstract

Treatment for neuroblastoma, the most common extracranial childhood tumor, spans a broad range of aggressiveness that mirrors the risk profiles of disease subtypes, with high-risk neuroblastoma still presenting a clinical challenge. Currently, most patients with relapsed neuro­blastoma die of disease and present a major challenge for treatment. New therapeutic options are urgently needed to improve patient survival. Activating mutations in the gene encoding the anaplastic lymphoma kinase (ALK) remain the most frequent druggable mutations identified in neuroblastomas to date. Preclinical data support an oncogene addiction of neuroblastoma cells to mutated ALK and demonstrate that ALK inhibitory therapy strongly combats tumor models. Most recently, pediatric phase I testing has been completed for the first approved ALK inhibitor, Crizotinib, showing very encouraging antitumoral results in neuroblastoma patients. Subsequently, an international phase I study with the second generation ALK inhibitor, LDK-378, will be launched that makes ALK inhibitory therapy also available to pediatric patients in Germany.

Zusammenfassung

Das Neuroblastom ist der häufigste extrakrani­elle Tumor des Kindesalters. Die Behandlung von Neuroblastomen der Hochrisikogruppe ist nach wie vor eine klinische Herausforderung, und die Prognose von Patienten mit einem Neuro­blastomrezidiv ist nahezu infaust. Aktivierende Mutationen im Gen der Anaplastischen Lymphomkinase sind die häufigsten Mutationen in Neuroblastomen, die einer zielgerichteten Therapie zugänglich sind. Präklinische Daten stützen die Hypothese einer Onkogenabhängigkeit der Neuroblastomzellen von mutierter Anaplastischer Lymphomkinase (ALK) und deuten auf eine hohe Effizienz einer Therapie hin, die auf die Inhibition von ALK abzielt. Kürzlich konnte bereits eine pädiatrische Phase-I-Studie mit dem ALK-Inhibitor Crizotinib mit guten Ergebnissen auch im Hinblick auf eine antitumorale Wirkung bei Neuroblastomen abgeschlossen werden. In den nächsten Wochen wird darüber hinaus eine internationale pädiatrische Phase-I-Studie mit einem ALK-Inhibitor der zweiten Generation, LDK-378, initiiert werden. Damit können erstmals auch in Deutschland pädiatrische Patienten in einer Studie mit einem ALK-Inhibitor behandelt werden.

 
  • References

  • 1 Berry T, Luther W, Bhatnagar N et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 2012; 22: 117-130
  • 2 Bochennek K, Esser R, Lehrnbecher T et al. Impact of minimal residual disease detection prior to autologous stem cell transplantation for post-transplant outcome in high risk neuroblastoma. Klinische Padiatrie 2012; 224: 139-142
  • 3 Bresler SC, Wood AC, Haglund EA et al. Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Science translational medicine 2011; 3 108ra114
  • 4 Butrynski JE, D’Adamo DR, Hornick JL et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med 2010; 363: 1727-1733
  • 5 Chen J, Jiang C, Wang S. LDK378: A Promising Anaplastic Lymphoma Kinase (ALK) Inhibitor. Journal of medicinal chemistry 2013; DOI: 10.1021/jm401005u.
  • 6 Chen Y, Takita J, Choi YL et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455: 971-974
  • 7 Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nature reviews Cancer 2013; 13: 397-411
  • 8 Cheung NK, Zhang J, Lu C et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 2012; 307: 1062-1071
  • 9 Corbacioglu S. Early phase clinical trials in pediatric hematology and oncology. Klinische Padiatrie 2012; 224: 197-200
  • 10 De Brouwer S, De Preter K, Kumps C et al. Meta-analysis of neuro­blastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clinical cancer research: an official journal of the American Association for Cancer Research 2010; 16: 4353-4362
  • 11 Dienstmann R, Rodon J, Barretina J et al. Genomic medicine frontier in human solid tumors: prospects and challenges. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2013; 31: 1874-1884
  • 12 Duijkers FA, Gaal J, Meijerink JP et al. Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels. Cellular oncology 2011; 34: 409-417
  • 13 Duijkers FA, Gaal J, Meijerink JP et al. High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. The American journal of pathology 2012; 180: 1223-1231
  • 14 Eggert A. Update: personalized diagnostics and therapies for pediatric cancer patients. Klinische Padiatrie 2013; 225: 107-109
  • 15 Galkin AV, Melnick JS, Kim S et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA 2007; 104: 270-275
  • 16 George RE, Attiyeh EF, Li S et al. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS One 2007; 2: e255
  • 17 George RE, Sanda T, Hanna M et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008; 455: 975-978
  • 18 Gobel U, Korholz D, Bernig T et al. Treatment of children and adolecents with cancer after the application of the guide lines for good clinical practice in 2004 and the evaluation of new measurements. Klinische Padiatrie 2012; 224: 335-338
  • 19 Grunewald TG, Greulich N, Kontny U et al. Targeted therapeutics in treatment of children and young adults with solid tumors: an expert survey and review of the literature. Klinische Padiatrie 2012; 224: 124-131
  • 20 Heukamp LC, Thor T, Schramm A et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Science translational medicine 2012; 4 141ra191
  • 21 Janoueix-Lerosey I, Lequin D, Brugieres L et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008; 455: 967-970
  • 22 Janoueix-Lerosey I, Schleiermacher G, Michels E et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 2009; 27: 1026-1033
  • 23 Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363: 1693-1703
  • 24 Lamant L, Pulford K, Bischof D et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am J Pathol 2000; 156: 1711-1721
  • 25 Marsilje TH, Pei W, Chen B et al. Synthesis, Structure-Activity Relationships, and in Vivo Efficacy of the Novel Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor 5-Chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) Currently in Phase 1 and Phase 2 Clinical Trials. Journal of medicinal chemistry 2013; DOI: 10.1021/jm400402q:.
  • 26 Martinsson T, Eriksson T, Abrahamsson J et al. Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy. Cancer Res 2011; 71: 98-105
  • 27 McDermott U, Iafrate AJ, Gray NS et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 2008; 68: 3389-3395
  • 28 Mestdagh P, Fredlund E, Pattyn F et al. An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 2010; 29: 3583-3592
  • 29 Mestdagh P, Fredlund E, Pattyn F et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 2010; 29: 1394-1404
  • 30 Molenaar JJ, Domingo-Fernandez R, Ebus ME et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature genetics 2012; 44: 1199-1206
  • 31 Molenaar JJ, Koster J, Zwijnenburg DA et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589-593
  • 32 Morris SW, Kirstein MN, Valentine MB et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994; 263: 1281-1284
  • 33 Mosse YP, Laudenslager M, Longo L et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008; 455: 930-935
  • 34 Mosse YP, Lim MS, Voss SD et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. The lancet oncology 2013; 14: 472-480
  • 35 Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 2011; 71: 4403-4411
  • 36 Oberthuer A, Berthold F, Warnat P et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 2006; 24: 5070-5078
  • 37 Otto T, Horn S, Brockmann M et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 2009; 15: 67-78
  • 38 Passoni L, Longo L, Collini P et al. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer research 2009; 69: 7338-7346
  • 39 Pugh TJ, Morozova O, Attiyeh EF et al. The genetic landscape of high-risk neuroblastoma. Nature genetics 2013; 45: 279-284
  • 40 Puissant A, Frumm SM, Alexe G et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer discovery 2013; 3: 308-323
  • 41 Reiff T, Huber L, Kramer M et al. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 2011; 138: 4699-4708
  • 42 Sasaki T, Okuda K, Zheng W et al. The Neuroblastoma-Associated F1174L ALK Mutation Causes Resistance to an ALK Kinase Inhibitor in ALK-Translocated Cancers. Cancer Res 2010; 70: 10038-10043
  • 43 Sausen M, Leary RJ, Jones S et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nature genetics 2013; 45: 12-17
  • 44 Schleiermacher G, Janoueix-Lerosey I, Ribeiro A et al. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 2010; 28: 3122-3130
  • 45 Schulte JH, Bachmann HS, Brockmeyer B et al. High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin Cancer Res 2011; 17: 5082-5092
  • 46 Schulte JH, Lindner S, Bohrer A et al. MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells. Oncogene 2013; 32: 1059-1065
  • 47 Schulte JH, Marschall T, Martin M et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 2010; 38: 5919-5928
  • 48 Schulte JH, Schowe B, Mestdagh P et al. Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer 2010; 127: 2374-2385
  • 49 Schwab M, Alitalo K, Klempnauer KH et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 1983; 305: 245-248
  • 50 Seeger RC, Brodeur GM, Sather H et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313: 1111-1116
  • 51 Simon T, Berthold F, Borkhardt A et al. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatric blood & cancer 2011; 56: 578-583
  • 52 Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448: 561-566
  • 53 Trochet D, Bourdeaut F, Janoueix-Lerosey I et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 2004; 74: 761-764
  • 54 van Gaal JC, Flucke UE, Roeffen MH et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2012; 30: 308-315
  • 55 Witt O, Milde T, Deubzer HE et al. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma or leukemia. Klinische Padiatrie 2012; 224: 398-403
  • 56 Yu AL, Gilman AL, Ozkaynak MF et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010; 363: 1324-1334
  • 57 Zhu S, Lee JS, Guo F et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21: 362-373