neuroreha 2013; 05(03): 134-138
DOI: 10.1055/s-0033-1355434
Schwerpunkt Parkinson
Aus der Praxis
Georg Thieme Verlag KG Stuttgart · New York

Cueing und Biofeedback: Kompensationsstrategien von Patienten mit Parkinson-Syndrom

Pieter Ginis
,
Alice Nieuwboer
1   Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001 Heverlee, Belgien
,
Elke Heremans
› Author Affiliations
Further Information

Publication History

Publication Date:
16 September 2013 (online)

Zusammenfassung

Bewegungen von Patienten mit Parkinson-Erkrankung sind durch einen mangelnden Automatisierungsgrad eingeschränkt. Das liegt an einem Defizit im basalganglio-thalamokortikalen System, welches vornehmlich beim Generieren von Bewegungen involviert ist. Um das Basalgangliensystem zu umgehen, wird das zerebello-thalamokortikale System verstärkt genutzt. Als Konsequenz profitieren Patienten mit Parkinson von kompensatorischen Strategien. Zwei wichtige Strategien in diesem Zusammenhang sind externe Schrittmacher (oft auch als Cueing bezeichnet) und Biofeedback. Dieser Artikel gibt einen Überblick über die zugrunde liegenden Mechanismen und potenzielle Trainingseffekte dieser beiden Strategien in der Rehabilitation von Patienten mit Parkinson. Außerdem beschreiben die Autoren neue Technologien, die eine effiziente Integration von externen Schrittmachern und Biofeedback in die klinische Rehabilitation und für zu Hause erleichtern könnten.

 
  • Literatur

  • 1 Arias P, Cudeiro J. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PloS one 2010; 5: e9675-e9675
  • 2 Bachlin M et al. Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society 2010; 14: 436-446
  • 3 Baker K et al. The effect of cues on gait variability – reducing the attentional cost of walking in people with Parkinson’s disease. Parkinsonism & related disorders 2008; 14: 314-320
  • 4 Bonato P. Advances in Wearable Technology and its Medical Applications. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2010; 2021-2024
  • 5 Bryant MS et al. An investigation of two interventions for micrographia in individuals with Parkinson’s disease. Clin Rehabil 2010; 24: 1021-1026
  • 6 Chiviacowsky S et al. Reduced frequency of knowledge of results enhances learning in persons with Parkinson’s disease. Front Psychol 2010; 1: 226-226
  • 7 Debaere F et al. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 2003; 19: 764-776
  • 8 Dietz MA et al. Evaluation of a modified inverted walking stick as a treatment for parkinsonian freezing episodes. Movement disorders: official journal of the Movement Disorder Society 1990; 5: 243-247
  • 9 Donovan S et al. Laserlight cues for gait freezing in Parkinson’s disease: an open-label study. Parkinsonism & related disorders 2011; 17: 240-245
  • 10 Dozza M et al. Influence of a portable audio-biofeedback device on structural properties of postural sway. Journal of neuroengineering and rehabilitation 2005; 2: 13-13
  • 11 Dozza M et al. Audio-biofeedback improves balance in patients with bilateral vestibular loss. Archives of physical medicine and rehabilitation 2005; 86: 1401-1403
  • 12 Esculier JF et al. Home-based balance training programme using Wii Fit with balance board for Parkinson’s disease: a pilot study. Journal of rehabilitation medicine: official journal of the UEMS European Board of Physical and Rehabilitation Medicine 2012; 44: 144-150
  • 13 Espay AJ et al. At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. The Journal of Rehabilitation Research and Development 2010; 47: 573-573
  • 14 Frazzitta G et al. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Movement disorders: official journal of the Movement Disorder Society 2009; 24: 1139-1143
  • 15 Heremans E et al. Freezing of gait in Parkinson‘s disease: where are we now?. Curr Neurol Neurosci Rep 2013; 13: 350-350
  • 16 Horak FB et al. Vibrotactile biofeedback improves tandem gait in patients with unilateral vestibular loss. Ann N Y Acad Sci 2009; 1164: 279-281
  • 17 Jahanshahi M et al. Self-initiated versus externally triggered movements. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson‘s disease subjects Brain: a journal of neurology 1995; 118: 913-933
  • 18 Lim I et al. Effects of external rhythmical cueing on gait in patients with Parkinson‘s disease: a systematic review. Clinical Rehabilitation 2005; 19: 695-713
  • 19 Lohnes CA et al. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait & posture 2011; 33: 478-483
  • 20 Mak MK et al. Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson‘s disease: A randomized controlled trial. Movement disorders: official journal of the Movement Disorder Society 2008; 23: 501-509
  • 21 Kadivar Z et al. Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabilitation and neural repair 2011; 25: 626-635
  • 22 Lee SJ et al. The effects of visual and auditory cues on freezing of gait in patients with Parkinson disease. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists 2012; 91: 2-11
  • 23 Lewis GN et al. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users?. Disability and rehabilitation 2012;
  • 24 Mendes FA et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson‘s disease – effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy 2012; 98: 217-223
  • 25 Mirelman A et al. Audio-biofeedback training for posture and balance in patients with Parkinson‘s disease. Journal of neuroengineering and rehabilitation 2011; 8: 35-35
  • 26 Mirelman A et al. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson‘s disease?. The journals of gerontology Series A, Biological sciences and medical sciences 2011; 66: 234-240
  • 27 Morris ME et al. Stride length regulation in Parkinson‘s disease normalization strategies and underlying mechanisms. Brain 1996; 119: 551-568
  • 28 Nanhoe-Mahabier W et al. The effects of vibrotactile biofeedback training on trunk sway in Parkinson‘s disease patients. Parkinsonism & related disorders 2012; 18: 1017-1021
  • 29 Nanhoe-Mahabier W et al. The possible price of auditory cueing: influence on obstacle avoidance in Parkinson‘s disease. Movement disorders: official journal of the Movement Disorder Society 2012; 27: 574-578
  • 30 Nieuwboer A. Cueing for freezing of gait in patients with Parkinson‘s disease: a rehabilitation perspective. Movement disorders: official journal of the Movement Disorder Society 2008; 23 (Suppl. 02) S475-481
  • 31 Nieuwboer A et al. Cueing training in the home improves gait-related mobility in Parkinson‘s disease: the RESCUE trial. Journal of neurology, neurosurgery, and psychiatry 2007; 78: 134-140
  • 32 Nieuwboer A et al. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism and Related Disorders 2009; 15: 53-58
  • 33 Nutt JG et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. The Lancet Neurology 2011; 10: 734-744
  • 34 Oliveira RM et al. Micrographia in Parkinson‘s disease: the effect of providing external cues. Journal of neurology, neurosurgery, and psychiatry 1997; 63: 429-433
  • 35 Patel S et al. Home monitoring of patients with Parkinson‘s disease via wearable technology and a web-based application. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 4411-4414
  • 36 Pompeu JE et al. Effect of Nintendo Wii-based motor and cognitive training on activities of daily living in patients with Parkinson‘s disease: a randomised clinical trial. Physiotherapy 2012; 98: 196-204
  • 37 Rochester L et al. Evidence for motor learning in Parkinson‘s disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Research 2010; 1319: 103-111
  • 38 Rubinstein TC et al. The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson‘s disease. Movement disorders: official journal of the Movement Disorder Society 2002; 17: 1148-1160
  • 39 Sarma SV et al. The effects of cues on neurons in the basal ganglia in Parkinson‘s disease. Frontiers in integrative neuroscience 2012; 6: 40-40
  • 40 Schlick C et al. Dynamic visual cueing in combination with treadmill training for gait rehabilitation in Parkinson disease. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists 2012; 91: 75-79
  • 41 Schmidt RA et al. Summary knowledge of results for skill acquisition: support for the guidance hypothesis. J Exp Psychol Learn Mem Cogn 1989; 15: 352-359
  • 42 Spildooren J et al. Turning and unilateral cueing in Parkinson‘s disease patients with and without freezing of gait. Neuroscience 2012; 207: 298-306
  • 43 Tomlinson CL et al. Physiotherapy intervention in Parkinson‘s disease: systematic review and meta-analysis. Bmj 2012; 345: e5004-e5004
  • 44 Tseng IJ et al. Comparisons of forward and backward gait between poorer and better attention capabilities in early Parkinson‘s disease. Gait & posture 2012; 36: 367-371
  • 45 Turner RS et al. Basal ganglia contributions to motor control: a vigorous tutor. Current opinion in neurobiology 2010; 20: 704-716
  • 46 Vercruysse S et al. Freezing in Parkinson‘s disease: a spatiotemporal motor disorder beyond gait. Movement disorders: official journal of the Movement Disorder Society 2012; 27: 254-263
  • 47 Verschueren SM et al. Interlimb coordination in patients with Parkinson‘s disease: motor learning deficits and the importance of augmented information feedback. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 1997; 113: 497-508
  • 48 Wong MS et al. Effectiveness of audio-biofeedback in postural training for adolescent idiopathic scoliosis patients. Prosthet Orthot Int 2001; 25: 60-70
  • 49 Wu G. Real-time feedback of body center of gravity for postural training of elderly patients with peripheral neuropathy. IEEE Trans Rehabil Eng 1997; 5: 399-402
  • 50 Wu T et al. A functional MRI study of automatic movements in patients with Parkinson‘s disease. Brain: a journal of neurology 2005; 128: 2250-2259
  • 51 Wulf G et al. Motor skill learning and performance: a review of influential factors. Medical education 2010; 44: 75-84
  • 52 Yen CY et al. Effects of Virtual Reality-Augmented Balance Training on Sensory Organization and Attentional Demand for Postural Control in People With Parkinson Disease: A Randomized Controlled Trial. Physical Therapy 2011; 91: 862-874
  • 53 Yogev G et al. Dual tasking, gait rhythmicity, and Parkinson‘s disease: which aspects of gait are attention demanding?. The European journal of neuroscience 2005; 22: 1248-1256
  • 54 Zhang S et al. Activity Monitoring Using a Smart Phone’s Accelerometer with Hierarchical Classification. Sixth International Conference on Intelligent Environments 2010; 158-163
  • 55 Zijlstra A et al. Biofeedback for training balance and mobility tasks in older populations: a systematic review. Journal of neuroengineering and rehabilitation 2010; 7: 58-58