Der Klinikarzt 2013; 42(7): 276-280
DOI: 10.1055/s-0033-1354312
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Multiresistente Erreger im Krankenhaus – Zusammenhang mit Antibiotika in der Tierproduktion?

Multi-resistant bacterial pathogens in hospital – Association between antibiotic use in food animals?
Daniel Jonas
1   Institut für Umweltmedizin und Krankenhaushygiene, Universitätsklinikum Freiburg, Freiburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. August 2013 (online)

Behandlungen von Infektionen mit Multiresistenten Erregern (MRE) im Krankenhaus sind ein seit langer Zeit zunehmendes Problem. Besonders bei MRE Enterobakteriazeen häufen sich Infektionen mit nur noch sehr eingeschränkten Therapieoptionen. Im Unterschied zu den in vergangenen Jahrzehnten in der Regel im Krankenhaus erworbenen MRE zeichnet sich eine veränderte Epidemiologie dieser Infektionserreger ab, in Form von zunehmend ambulant erworbenen, in das Krankenhaus hineingetragenen MRE.

Auf Basis neuer Daten werden mögliche Zusammenhänge zwischen Antibiotikagebrauch bei der Aufzucht von Lebensmitteltieren und klinischen Infektionen mit MRE diskutiert. Durch Selektion und Vermehrung in der Tierzucht können MRE über Lebensmittel als Bakterien oder lediglich in Form von Resistenzgenen auf Plasmiden in die kommensale Darmflora des Menschen gelangen. Unter Antibiotikaselektion und nach Überwinden natürlicher Barrieren können MRE als Infektionserreger auftreten. Daraus ergeben sich vielgestaltige Konsequenzen.

Treatment of hospital infections caused by multi-resistant bacterial pathogens (MRBP) has been a growing problem for some time now. Especially multi-resistant enterics cause infections with very limited treatment options. In contrast to past decades of predominantly hospital acquired MRBP, nowadays an epidemiological change is being observed in these pathogens, with an increasing number of MRBP acquired in the community being introduced into the hospital.

Based on recent data, a possible association is discussed between antibiotic use in food animals and clinical infections with MRBP. By selection and amplification in animal husbandry, MRBP can be transferred to the human commensal microbiota via food as bacteria or resistance genes located on plasmids. Under antimicrobial selection pressure and after overcoming natural barriers, MRBP become manifest as infectious pathogens. The consequences are multifaceted.

 
  • Literatur

  • 1 Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 2011; 24: 718-733
  • 2 Meyer E, Gastmeier P, Deja M, Schwab F. Antibiotic consumption and resistance: Data from Europe and Germany. Int J Med Microbiol DOI: 10.1016/j.ijmm.2013.04.004.. [Epub ahead of print] 2013;
  • 3 D'Costa VM, King CE, Kalan L et al. Antibiotic resistance is ancient. Nature 2011; 477: 457-461
  • 4 Durso LM, Miller DN, Wienhold BJ. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS One 2012; 7
  • 5 Wellington EM, Boxall AB, Cross P et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 2013; 13: 155-165
  • 6 Silley P, Simjee S, Schwarz S. Surveillance and monitoring of antimicrobial resistance and antibiotic consumption in humans and animals. Rev Sci Tech 2012; 31: 105-120
  • 7 Klare I, Badstubner D, Konstabel C et al. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 1999; 5: 45-52
  • 8 Wegener HC, Aarestrup FM, Jensen LB et al. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg Infect Dis 1999; 5: 329-335
  • 9 Bates J, Jordens JZ, Griffiths DT. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J Antimicrob Chemother 1994; 34: 507-514
  • 10 Teuber M. Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci 1999; 56: 755-763
  • 11 Smith DL, Harris AD, Johnson JA et al. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci U S A 2002; 99: 6434-6439
  • 12 Manges AR, Johnson JR. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 2012; 55: 712-719
  • 13 Kluytmans JA, Overdevest IT, Willemsen I et al. Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis 2013; 56: 478-487
  • 14 Catry B, Van DE, Pomba MC et al. Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiol Infect 2010; 138: 626-644
  • 15 Smith R, Coast J. The true cost of antimicrobial resistance. BMJ 2013; 346