Horm Metab Res 2013; 45(13): 967-974
DOI: 10.1055/s-0033-1353181
Review
© Georg Thieme Verlag KG Stuttgart · New York

Hypothalamic QRFP: Regulation of Food Intake and Fat Selection

S. D. Primeaux
1   Joint Diabetes, Endocrinology & Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, USA
,
M. J. Barnes
2   Pennington Biomedical Research Center, Baton Rouge, USA
,
H. D. Braymer
2   Pennington Biomedical Research Center, Baton Rouge, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 30. April 2013

accepted 23. Juli 2013

Publikationsdatum:
26. August 2013 (online)

Abstract

QRFP, a member of the RFamide-related peptide family, is a strongly conserved hypothalamic neuropeptide that has been characterized in various species. Prepro-QRFP mRNA expression is localized to select regions of the hypothalamus, which are involved in the regulation of feeding behavior. The localization of the peptide precursor has led to the assessment of QRFP on feeding behaviors and the orexigenic effects of QRFP have been detected in mice, rats, and birds. QRFP acts in a macronutrient specific manner in satiated rats to increase the intake of a high fat diet, but not the intake of a low fat diet, and increases the intake of chow in food-restricted rats. Studies suggest that QRFP’s effects on food intake are mediated by the adiposity signal, leptin, and hypothalamic neuropeptides. Additionally, QRFP regulates the expression and release of hypothalamic Neuropeptide Y and proopiomelanocortin/α-Melanocyte-Stimulating Hormone. QRFP binds to receptors throughout the brain, including regions associated with food intake and reward. Taken together, these data suggest that QRFP is a mediator of motivated behaviors, particularly the drive to ingest high fat food. The present review discusses the role of QRFP in the regulation of feeding behavior, with emphasis on the intake of dietary fat.

 
  • References

  • 1 Chartrel N, Dujardin C, Anouar Y, Leprince J, Decker A, Clerens S, Do-Rego JC, Vandesande F, Llorens-Cortes C, Costentin J, Beauvillain JC, Vaudry H. Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci USA 2003; 100: 15247-15252
  • 2 Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J, Boutin J, Vaudry H, Anouar Y, Llorens-Cortes C. The RFamide neuropeptide 26RFa and its role in teh control of neuroendocrine functions. Front Neuroendocrinol 2011; 32: 387-397
  • 3 Dockray GJ. The expanding family of RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89: 229-235
  • 4 Fukusumi S, Fujii R, Hinuma S. Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides 2006; 27: 1073-1086
  • 5 Kovacs A, Laszlo K, Galosi R, Toth K, Ollmann T, Peczely L, Lenard L. Microinjection of RFRP-1 in the central nucleus of amygdala decreases food intake in the rat. Brain Res Bull 2012; 88: 589-595
  • 6 Kutzlep C, Busmann A, Wendland M, Maronde E. Discovery of novel regulatory peptides by reverse pharmacology: spotlight on chemerin and the RF-amide peptides metastin and QRFP. Curr Protein Pept Sci 2005; 6: 265-278
  • 7 Losa-Ward SM, Todd KL, McCaffrey KA, Tsutsui K, Patisaul HB. Disrupted organization of RFamide pathways in teh hypothalmus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol Reprod 2012; 87: 28
  • 8 Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocrine Reviews 2009; 30: 713-743
  • 9 Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol 2013; 98: 176-196
  • 10 Poling MC, Kim J, Dhamija S, Kauffman AS. Develoopment, sex steroid regulation, and phenotypic characterization of RFamide-related peptide (Rfrp) gene expression and RFamide receptors in the mouse hypothalamus. Endocrinology 2012; 153: 1827-1840
  • 11 Simmoneaux V, Ancel C, Poirel VJ, Gauer F. Kisspeptins and RFRP-3 act in concert to synchronize rodent reproduction with seasons. Front Neurosci 2013; 7: 22
  • 12 Umatani C, Abe H, Oka Y. Neuropeptide RFRP inhibites the pacemaker activity of terminal nerve GnRH neurons. J Neurophysiol 2013; 109: 2354-2363
  • 13 Ukena K, Tachibana T, Iwakoshi-Ukena E, Saito Y, Minakata H, Kawaguchi R, Osugi T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization, and fucntion of a novel avian hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-couple receptor 103. Endocrinology 2010; 151: 2255-2264
  • 14 Liu Y, Zhang Y, Li S, Huang W, Liu X, Lu D, Meng Z, Lin H. Molecular cloning and functional characterization of the first non-mammalian 26RFa/QRFP orthologue in Goldfish, carassius auratus. Mol Cell Endocrinol 2009; 303: 82-90
  • 15 Tobari Y, Iijima N, Tsunekawa K, Osugi T, Haraguchi S, Ubuka T, Ukena K, Okanoya K, Tsutsui K, Ozawa H. Identification, localization and functional implication of 26RFa ortholog peptide in the brain of zebra finch (taeniopygia guttata). J Neuroendocrinol 2011; 23: 791-803
  • 16 Fukusumi S, Yoshida H, Fujii R, Maruyama M, Komatsu H, Habata Y, Shintani Y, Hinuma S, Fujino M. A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem 2003; 278: 46387-46395
  • 17 Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassileva G, Zeng M, Laz TM, Behan J, Qiu P, Wang L, Wang S, Bayne M, Greene J, Monsma F, Zhang FL. Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 2003; 278: 27652-27657
  • 18 do Rego JC, Leprince J, Chartrel N, Vaudry H, Costentin J. Behavioral effects of 26RFamide and related peptides. Peptides 2006; 27: 2715-2721
  • 19 Lectez B, Jeandel L, El-Yamani FZ, Arthaud S, Alexandre D, Mardargent A, Jegou S, Mounien L, Bizet P, Magoul R, Anouar Y, Chartrel N. The orexigenic activity of the hypothalamic neuropeptide 26RFa is mediated by the neuropeptide Y and proopiomelanocortin neurons of the arcuate nucleus. Endocrinology 2009; 150: 2342-2350
  • 20 Moriya R, Sano H, Umeda T, Ito M, Takahashi Y, Matsuda M, Ishihara A, Kanatani A, Iwaasa H. RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. Endocrinology 2006; 147: 2916-2922
  • 21 Navarro VM, Fernandez-Fernandez R, Nogueiras R, Vigo E, Tovar S, Chartrel N, Le MO, Leprince J, Aguilar E, Pinilla L, Dieguez C, Vaudry H, Tena-Sempere M. Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. J Physiol 2006; 573: 237-249
  • 22 Patel SR, Murphy KG, Thompson EL, Patterson M, Curtis AE, Ghatei MA, Bloom SR. Pyroglutamylated RFamide peptide 43 stimulates the hypothalamic-pituitary-gonadal axis via gonadotrophin-releasing hormone in rats. Endocrinology 2008; 149: 4747-4754
  • 23 Primeaux SD. QRFP in female rats: effects on high fat food intake and hypothalamic gene expression across the estrous cycle. Peptides 2011; 32: 1270-1275
  • 24 Primeaux SD, Blackmon C, Barnes MJ, Braymer HD, Bray GA. Central administration of the RFamide peptides, QRFP-26 and QRFP-43, increases high fat food intake in rats. Peptides 2008; 29: 1994-2000
  • 25 Takayasu S, Sakurai T, Iwasaki S, Teranishi H, Yamanaka A, Williams SC, Iguchi H, Kawasawa YI, Ikeda Y, Sakakibara I, Ohno K, Ioka RX, Murakami S, Dohmae N, Xie J, Suda T, Motoike T, Ohuchi T, Yanagisawa M, Sakai J. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci USA 2006; 103: 7438-7443
  • 26 Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 2002; 3: 589-600
  • 27 Berthoud HR. Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol Behav 2007; 91: 486-498
  • 28 Berthoud HR, Munzberg H, Richards BK, Morrison CD. Neural and metabolic regulation of macronutrient intake and selection. Proc Nutr Soc 2012; 71: 390-400
  • 29 Shin AC, Zheng H, Berthoud HR. An expanded view of energy homeostatis: Neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 2009; 97: 572-580
  • 30 Schwartz MW, Woods SC, Porte JD, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404: 661-671
  • 31 Wynne K, Stanley S, McGowan B, Bloom S. Appetite control. J Endocrinol 2005; 184: 291-318
  • 32 Bouret SG. Crossing the border: developmental regulation of leptin transport to the brain. Endocrinology 2008; 149: 875-876
  • 33 Bray GA, Popkin BM. Dietary fat intake does affect obesity!. Am J Clin Nutr 1998; 68: 1157-1173
  • 34 Bray GA, Popkin BM. Dietary fat affects obesity rate. Am J Clin Nutr 1999; 70: 572-573
  • 35 Bray GA, Paeratakul S, Popkin BM. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 2004; 83: 549-555
  • 36 Lissner L, Heitmann BL. Dietary fat and obesity: evidence from epidemiology. Eur J Clin Nutr 1995; 49: 79-90
  • 37 Madsen AN, Hansen G, Paulsen SJ, Lykkegaard K, Tang-Christensen M, Hansen HS, Levin BE, Larsen PJ, Knudsen LB, Fosgerau K, Vrang N. Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome. J Endocrinol 2010; 206: 287-296
  • 38 Primeaux SD, Braymer HD, Bray GA. High fat diet differentially regulates the expression of olfactory receptors in teh duodenum of obesity-prone and obesity-resistant rats. Dig Dis Sci 2013; 58: 72-76
  • 39 Primeaux SD, Braymer HD, Bray GA. CD36 mRNA in the gastrointestinal tract is differentially regulated by dietary fat intake in obesity-prone and obesity-resistant rats. Dig Dis Sci 2013; 58: 369-370
  • 40 Primeaux SD, Barnes MJ, Braymer HD, Bray GA. Sensitivity to the satiating effects of Exendin 4 is decreased in obesity-prone Osborne-Mendel rats compared to obesity-resistant S5B/Pl rats. Int J Obes 2010; 34: 1427-1433
  • 41 Ricci MR, Levin BE. Ontogeny of diet-induced obesity in selectively bred Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2003; 285: R610-R618
  • 42 Chartrel N, Bruzzone F, Leprince J, Tollemer H, Anouar Y, Do-Rego JC, Segalas-Milazzo I, Guilhaudis L, Cosette P, Jouenne T, Simonnet G, Vallarino M, Beauvillain JC, Costentin J, Vaudry H. Structure and functions of the novel hypothalamic RFamide neuropeptides R-RFa and 26RFa in vertebrates. Peptides 2006; 27: 1110-1120
  • 43 Thuau R, Guilhaudis L, Segalas-Milazzo I, Chartrel N, Oulyadi H, Boivin S, Fournier A, Leprince J, Davoust D, Vaudry H. Structural studies on 26RFa, a novel human RFamide-related peptide with orexigenic activity. Peptides 2005; 26: 779-789
  • 44 Kampe J, Wiedmer P, Pfluger PT, Castaneda TR, Burget L, Mondala H, Kerr J, Liaw C, Oldfield BJ, Tschop MH, Bagnol D. Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Res 2006; 1119: 133-149
  • 45 Bruzzone F, Lectez B, Alexandre D, Jegou S, Mounien L, Tollemer H, Chatenet D, Leprince J, Vallarino M, Vaudry H, Chartrel N. Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat. J Comp Neurol 2007; 503: 573-591
  • 46 Yeo GS, Heisler LK. Unraveling the brain regulation of appetite: lessons from genetics. Nature Neurosci 2012; 15: 1343-1349
  • 47 Gouarderes C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM. Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of 35S GTPS binding. Neuropharmacology 2007; 52: 376-386
  • 48 Gouarderes C, Puget A, Zajac JM. Detailed distribution of Neuropeptide FF receptors (NPFF1 and NPFF2) in the rat, mouse, octodon, rabbit, guinea pig and marmoset monkey brains: a comparative audoradiographic study. Synapse 2004; 51: 249-269
  • 49 Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984; 115: 427-429
  • 50 Heinrichs SC, Menzaghi F, Pich EM, Hauger RL, Koob GF. Corticotropin-releasing factor in the paraventriuclar nucleus modulates feeding induced by neuropeptide Y. Brain Res 1993; 611: 18-24
  • 51 Konturek PC, Konturek JW, Czesnikiewicz-Guzik M, Brzozowski T, Sito E, Konturek SJ. Neuro-hormonal control of food intake: basic mechanisms and clinical implications. J Physiol Pharmacol 2005; 56 (Suppl. 06) 5-25
  • 52 Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380: 243-247
  • 53 Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92: 573-585
  • 54 Tiesjema B, la Fleur SE, Luijendijk MC, Brans MA, Lin EJ, During MJ, Adan RA. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Obesity (Silver Spring) 2007; 15: 2424-2435
  • 55 Woods SC, Figlewicz DP, Madden LJ, Porte D, Sipols AJ, Seeley RJ. NPY and food intake: Discrepancies in the model. Regul Pept 1998; 75–76: 403-408
  • 56 Barnes MJ, Lapanowski K, Conley A, Rafols JA, Jen KL, Dunbar JC. High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res Bull 2003; 61: 511-519
  • 57 Hagan MM, Rushing PA, Benoit SC, Woods SC, Seeley RJ. Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection. Am J Physiol Regul Integr Comp Physiol 2001; 280: R814-R821
  • 58 Koegler FH, York DA, Bray GA. The effects on feeding of galanin and M40 when injected into the nucleus of the solitary tract, the lateral parabrachial nucleus, and the third ventricle. Physiol Behav 1999; 67: 259-267
  • 59 Leibowitz SF, Wortley KE. Hypothalamic control of engery balance: different peptides, different functions. Peptides 2004; 25: 473-504
  • 60 Zhang M, Kelley AE. Enhanced intake of high fat food following striatal mu-opiod stimulation: microinjection mapping and fos expression. Neuroscience 2000; 99: 267-277
  • 61 Beck B, Richy S. Suppression of QRFP 43 in the hypothalamic ventromedial nucleus of Long-Evans rats fed a high-fat diet. Biochem Biophys Res Commun 2009; 383: 78-82
  • 62 Galusca B, Jeandel L, Germain N, Alexandre D, Leprince J, Anouar Y, Estour B, Chartrel N. Orexigenic neuroptpdie 26Rfa: new evidence for an adaptive progile of appetite regulation in anorexia nervosa. J Clin Endocrinol Metab 2012; 97: 2012-2018
  • 63 Mulumba M, Jossart C, Granata R, Gallo D, Escher E, Ghigo E, Servant MJ, Marleau S, Ong H. GPR103b functions in theperipheral regulation of adipogenesis. Mol Endocrinol 2010; 24: 1615-1625
  • 64 Le Marec O, Neveu C, Lefranc B, Dubessy C, Boutin JA, Do-Rego JC, Costentin J, Tonon MC, Tena-Sempere M, Vaudry H, Leprince J. Structure-activity relationships of a series of analogues of teh RFamide-related peptide 26RFa. J Med Chem 2011; 54: 4806-4814
  • 65 Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin J, Segalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc’h M, Vaudry D, Leprince J. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-B3-pseudopeptide agonist. J Med Chem 2012; 55: 7516-7524
  • 66 Barson JR, Morganstern I, Leibowitz S, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53: 35-58
  • 67 Lee AK, Mojtahed-Jaberi M, Kyrikou T, Astarloa EAO, Arno M, Marshall NJ, Brain SD, O’Dell SD. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 2010; 26: 411-422
  • 68 Leibowitz SF. Regulation and efects of hypothalamic galanin: relation to dietary fat, alcohol ingestion, circulating lipids and energy homeostasis. Neuropeptides 2005; 39: 327-332
  • 69 Deshmukh RR, Sharma PL. Stimulation of accumbens shell cannabinoid CV(1) receptors by noladin ether, a putative endocannabinoid, modulates food intake and dietary selection in rats. Pharmacol Res 2012; 66: 276-282
  • 70 Higuchi S, Ohji M, Araki M, Furuta R, Katsuki M, Yamaguchi R, Akitake Y, Matsuyama K, Irie K, Mishima K, Mishima K, Iwasaki K, Fujiwara M. Increment of hypothalamic 2-arachidonoylgylcerol induces the preference for a high fat diet via activation of cannabinoid 1 receptors. Behav Brain Res 2011; 216: 477-480
  • 71 Katsuura Y, Heckmann JA, Taha SA. Mu-opioid receptor stimulation in the nucleus accumbens elevates fatty tastant intake by incresing palatability and suppressing satiety signals. Am J Physiol Regulatory Integrative Comp Physiol 2011; 301: R244-R254
  • 72 Zheng H, Patterson LM, Berthoud HR. Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 2007; 27: 11075-11082