Subscribe to RSS
DOI: 10.1055/s-0033-1353176
Comparison of Selected Lactate Threshold Parameters with Maximal Lactate Steady State in Cycling
Publication History
accepted after revision 14 July 2013
Publication Date:
13 November 2013 (online)
Abstract
The aim of the present investigation was to compare power at “onset of blood lactate accumulation” (OBLA), “individual anaerobic threshold” (IAT) and “+1.5 mmol ∙ l−1 lactate model” with power in maximal lactate steady state (MLSS) in cycling. However, there is a lack of studies concerning the absolute individual differences between different lactate parameters and MLSS.
A total of 57 male participants performed several 30-min constant-load tests to determine MLSS by measuring blood lactate concentration (BLC). Depending on BLC, power was increased or decreased by 10 W in the following 30-min test. For detecting power at different threshold parameters, an incremental test was performed that began at 40 W and increased by 40 W every 4 min.
Highly significant correlations were found between OBLA and MLSS: r=0.89 (mean difference −7.4 W); IAT and MLSS: r=0.83 (mean difference 12.4W), “+1.5 mmol ∙ l−1 lactate model” and MLSS: r=0.88 (mean difference −37.4W). On average, the parameters of OBLA and IAT approximate MLSS with no significant differences. The “+1.5 mmol ∙ l−1 lactate model” underestimates MLSS significantly.
Based on Bland-and-Altman, the comparison of power of all threshold parameters with power in MLSS shows great individual differences despite the high regression coefficients and low mean differences between these methods.
Key words
maximal lactate-steady-state - lactate threshold - endurance performance diagnostic - cycling - blood-lactate-concentration* These authors contributed equally to this article.
-
References
- 1 Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 1997; 27: 863-867
- 2 Beneke R. Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 2003; 89: 95-99
- 3 Beneke R, Hütler M, Leithäuser RM. Maximal lactate-steady-state independent of performance. Med Sci Sports Exerc 2000; 32: 1135-1139
- 4 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310
- 5 Coen B. Individuelle anaerobe Schwelle. Methodik und Anwendung in der sportmedizinischen Leistungsdiagnostik und Trainingssteuerung leichtathletischer Laufdisziplinen. Köln: Sportverl. Strauß. 1997
- 6 Dickhuth H-H, Yin L, Niess A, Röcker K, Mayer F, Heitkamp HC, Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 1999; 20: 122-127
- 7 Dörr C. Untersuchung der Validität verschiedener Laktatschwellenkonzepte an Ausdauersportlern. Justus Liebig University Giessen 2010;
- 8 Faude O, Kindermann W, Meyer T. Lactate threshold parameters: how valid are they?. Sports Med 2009; 39: 469-490
- 9 Harriss DJ, Atkinson G. Update – Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
- 10 Hauser T, Bartsch D, Schulz H. Reliability of Power and Lactate-Concentration of Maximal Lactate Steady-State during Constant-Load Tests in Cycling. Dt Z Sportmed 2011; 10: 16-19
- 11 Heck H, Beneke R. 30 Years of Lactate Thresholds – what remains to be done? Dt. Z Sportmed 2008; 59: 297-302
- 12 Heck H. Energiestoffwechsel und medizinische Leistungsdiagnostik. Schorndorf: Hofmann; 1990
- 13 Heck H. Laktat in der Leistungsdiagnostik. Schorndorf: Hofmann; 1990
- 14 Heck H, Rosskopf P. Die Laktat- Leistungsdiagnostik – valider ohne Schwellenkonzepte. TW Sport+Medizin 1993; 5: 344-352
- 15 Heck H, Rosskopf P. Grundlagen verschiedener Laktatschwellenkonzepte und ihre Bedeutung für die Trainingssteuerung. In Clasing D. (ed.). Stellenwert der Laktatbestimmung in der Leistungsdiagnostik. Stuttgart, Germany: G. Fischer; 1994: 111-131
- 16 Heck H, Hess G, Mader A. Vergleichende Untersuchungen zu verschiedenen Laktat-Schwellenkonzepten. Dt Z Sportmed 1985; 1+2: 19-25; 40–52
- 17 Hoogeveen AR, Hoogsteen J, Shep G. The maximal lactate steady state in elite endurance athletes. Jpn J Physiol 1997; 47: 481-485
- 18 Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc 1998; 30: 1304-1313
- 19 Mader A, Liesen H, Heck H, Phillipi H, Rost R, Schürch P, Hollmann W. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Dt Z Sportmed 1976; 27: 80-88; 109–112
- 20 Marées H. Sportphysiologie. Köln: Sportverl. Strauß; 2003
- 21 McLellan TM, Jacobs I. Reliability, reproducibility and validity of the individual anaerobic threshold. Eur J Appl Physiol 1993; 67: 125-131
- 22 Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle obtained after dynamic exercise. Pflugers Arch 1976; 367: 143-149
- 23 Sjödin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 1981; 2: 23-26
- 24 Stegmann H, Kindermann W, Schnabel A. Lactate Kinetics and Individual Anaerobic Threshold. Int J Sports Med 1981; 2: 160-165
- 25 Urhausen A, Coen B, Weiler B, Kindermann W. Individual Anaerobic Threshold and Maximum Lactate Steady State. Int J Sports Med 1993; 14: 134-139
- 26 Van Schuylenbergh R, Vanden Eynde B, Hespel P. Correlations Between Lactate and Ventilatory Thresholds and the Maximal Lactate Steady State in Elite Cyclists. Int J Sports Med 2004; 25: 403-408